Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20 A yCD = −2 B yCD =[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 36 C yCD = 52 Câu Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = C T = D yCD = D T = 81 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 B ( ; +∞) C (1; +∞) A (0; ) 4 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a đường √ thẳng BB′ AC ′ √ √ a a A B C a Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C π D (0; 1) Tính khoảng cách hai √ a D D −1 Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(5; 9; 5) C C(1; 5; 3) D C(3; 7; 4) Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B ( ; +∞) C [22; +∞) D ( ; 2] [22; +∞) A [ ; 2] [22; +∞) 4 R2 R2 Câu Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A −1 B C −9 Câu 10 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 2a3 B a3 C 6a2 D D 6a3 Câu 11 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 12 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 13 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) Trang 1/4 Mã đề 001 B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho đồng biến khoảng (−∞; 3) Câu 14 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a B C 2a D a A 2 Câu 15 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 − sin x + C B 5x5 − sin x + C C x5 + sin x + C D 5x5 + sin x + C Câu 16 Trong khơng gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) A (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 B (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 √ C (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Câu 17 Cho phương trình bậc hai az2 + bz + c = (với a, b, c ∈ R) Xét tập số phức, khẳng định sau, đâu khẳng định sai? A Phương trình cho ln có nghiệm B Nếu ∆ = b2 − 4ac < phương trình vơ nghiệm c C Phương trình cho có tích hai nghiệm a −b D Phương trình cho có tổng hai nghiệm a Câu 18 Gọi z1 , z2 , z3 ba nghiệm phức phương trình z3 −z2 +2 = Khi tổngP = |z1 +z2 +z3 +2−3i| bao √ nhiêu? √ A P = B P = C P = 13 D P = Câu 19 Gọi z1 , z2 hai nghiệm phức phương trình 2(1+i)z2 −4(2−i)z−5−3i = TổngT = |z1 |2 +|z2 |2 bao nhiêu? √ 13 13 D T = A T = B T = C T = Câu 20 Biết phương trình z2 + mz − m + = có hai nghiệm số ảo Khi tham số thực m gần giá trị giá trị sau? A B −1 C −4 D Câu 21 Biết z = + i z = nghiệm phương trình z3 + az2 + bz + c = (với a, b ∈ R ) Khi tổng a + b + c bao nhiêu? A B C D −2 Câu 22 Biết z = + 2i nghiệm phức phương trình z2 + (m − 1)z + m − = (m tham số phức) Khi phần ảo m bao nhiêu? 7 A − B C D − 4 4 Câu 23 Hai số phức z1 = + i z2 = − 3i nghiệm phương trình sau đây? A z2 − (1 + 4i)z + − 7i = B z2 − (5 − 2i)z + − 7i = C z2 + (5 − 2i)z − + 7i = D z2 + (1 + 4i)z − + 7i = Câu 24 Tất bậc bốn tập số phức có tổng mô-đun bao nhiêu? A B C D Câu 25 Tìm tất giá trị thực tham số m để phương trình mz2 + 2mz − 3(m − 1) = khơng có nghiệm thực 3 A m < m > B m ≥ C ≤ m < D < m < 4 Trang 2/4 Mã đề 001 Câu 26 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 B C D A 2 Câu 27 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = sinx + + C B f (x) = −sinx + x2 + C R R x2 + C D f (x) = sinx + x2 + C C f (x) = −sinx + Câu 28 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (2; 4; 6) C (−1; −2; −3) D (−2; −4; −6) R2 R2 Câu 29 Nếu f (x) = [ f (x) − 2] A B −2 C D Câu 30 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16π 16 A B C D 9 15 15 800π Câu 31 Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 ′ ′ ′ Câu 32 Cho khối lăng trụ đứng ABC · A B C √có đáy ABC tam giác vuông cân B, AB = a Biết a, thể tích khối lăng trụ cho khoảng cách từ A đến mặt phẳng (A′ BC) √ √ √ √ 3 A a B a C a D 2a3 R Câu 33 Cho dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = B F ′ (x) = − C F ′ (x) = lnx D F ′ (x) = x x x Câu 34 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ B 10 C D 15 A √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm N √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? Trang 3/4 Mã đề 001 ! A ; +∞ ! B ; 4 Câu 38 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| < B |A| ≥ ! C ; ! D 0; 2z − i Mệnh đề sau đúng? + iz C |A| > D |A| ≤ Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 26 D P = 34 + A P = Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 2)2 Câu 41 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = √ 2 Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 43 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 84 B S = 364 C S = 96 D S = 1979 Câu 44 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 6πa2 B 5πa2 C 4πa2 D 2πa2 π R4 Câu 45 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 15π π2 + 16π − π2 − π2 + 16π − 16 A B C D 16 16 16 16 Câu 46 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B Vô số C D Câu 47 Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? A q = ±2 B q = ± C q = ±1 D q = ±4 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(2; −6; 4) B M(−2; 6; −4) C M(5; 5; 0) D M(−2; −6; 4) Câu 49 Thể tích khối lập phương có cạnh 3a là: A 3a3 B 2a3 C 8a3 D 27a3 Câu 50 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m < −3 B m > −4 C −4 ≤ m < −3 D −4 < m ≤ −3 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001