Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0;[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; −1; 2) C I(1; 1; 2) D I(0; 1; 2) √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C a D Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A m = B −2 ≤ m ≤ C −2 < m < D < m < R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền √ 3bằng 2a Tính thể tích3 khối nón √ π 2.a π.a 2π.a3 4π 2.a3 A B C D 3 3 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y − 2z = B (P) : x − y + 2z = C (P) : x − 2y − = D (P) : x + y + 2z = Câu Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A N(1 ; ; 7) B Q(4 ; ; 2) C M(0 ; ; 2) D P(4 ; −1 ; 3) Câu 10 Trong khơng gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ A (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 B (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 C (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Câu 11 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A A310 B 103 C 310 D C10 Trang 1/4 Mã đề 001 Câu 12 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 + sin x + C B 5x5 + sin x + C C 5x5 − sin x + C D x5 − sin x + C Câu 13 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A 3a B C D Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) không cắt mặt cầu (S ) B (P) cắt mặt cầu (S ) C (P) tiếp xúc mặt cầu (S ) D (P) qua tâm mặt cầu (S ) 2 Câu 15 Cho hàm số f (x) = − x + (2m + 3)x − (m + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C 16 D R6 R6 R6 Câu 16 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A B C −2 D −6 Câu 17 Biết z số phức thỏa mãn z2 + 3z + = Khi mô-đun số phức w = z + ? √ √ √ √ B |w| = C |w| = 2 D |w| = A |w| = Câu 18 Biết z0 nghiệm phức có phần ảo dương phương trình z2 − 4z + 20 = Trên mặt phẳng tọa độ, điểm điểm biểu diễn số phức w = (1 + i)z0 − 2z0 ? A M3 (−2; 10) B M2 (2; −10) C M4 (6; −14) D M1 (6; 14) Câu 19 Cho phương trình bậc hai az2 + bz + c = (với a, b, c ∈ R) Xét tập số phức, khẳng định sau, đâu khẳng định sai? c A Phương trình cho có tích hai nghiệm a B Phương trình cho ln có nghiệm −b C Phương trình cho có tổng hai nghiệm a D Nếu ∆ = b2 − 4ac < phương trình vơ nghiệm Câu 20 Kí hiệu z1 , z2 , z3 z4 bốn nghiệm phức phương trình z4 − z2 − 12 = Tính tổng T = |z1 | + |z√2 | + |z3 | + |z4 | √ √ A T = B T = + C T = D T = + Câu 21 Tìm tất giá trị thực tham số m để phương trình mz2 + 2mz − 3(m − 1) = nghiệm thực 3 A m < m > B m ≥ C ≤ m < D < m < 4 Câu 22 Biết x = nghiệm phương trình x2 + (m2 − 1)x − 8(m − 1) = (m tham số phức có phần ảo√âm) Khi đó, mơ-đun số phức w = m2 − 3m +√i ? √ A |w| = B |w| = C |w| = 73 D |w| = Câu 23 Biết z = − 3i nghiệm phương trình z2 + az + b = ( với a, b ∈ R ) Khi hiệu a − b A −12 B 12 C D −8 Câu 24 Biết z nghiệm phức có phần ảo dương phương trình z2 − 4z + 13 = Khi mơ-đun số phức w = √ z + 2z bao nhiêu?√ √ A |w| = 37 B |w| = 13 C |w| = D |w| = 13 Trang 2/4 Mã đề 001 Câu 25 Gọi z1 , z2 hai nghiệm phức phương trình 2(1+i)z2 −4(2−i)z−5−3i = TổngT = |z1 |2 +|z2 |2 bao nhiêu? √ 13 13 A T = B T = C T = D T = Câu 26 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (1; −2; 3) C (−1; 2; 3) D (−1; −2; −3) ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; 2) B (−2; 0) C (2; 0) Câu 27 Cho hàm số y = D (0; −2) Câu 28 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B 15 C D 17 Câu 29 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 45◦ C 30◦ D 60◦ Câu 30 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 14 B 18 + C 28 D 11 + Câu 31 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D 2 R4 R4 R4 Câu 32 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C D −1 Câu 33 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D 2 √ 2 Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 z+1 Câu 35 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Câu 36 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 C < |z| < Câu 37 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? C A B D + z + z2 số thực − z + z2 < |z| < 2 D Trang 3/4 Mã đề 001 Câu 38 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 85 97 B T = 13 A T = C T = 13 D T = 3 √ Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm M C điểm N D điểm Q √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 40 Cho a, b, c số thực z = − + 2 A a2 + b2 + c2 + ab + bc + ca B a2 + b2 + c2 − ab − bc − ca C D a + b + c √ Giá trị lớn biểu thức Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 2z − i Câu 42 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| < B |A| > C |A| ≤ D |A| ≥ Câu 43 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 A B C D 210 210 21 105 x+1 y z−2 Câu 44 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y − z + = B (P) : x − 2z + = C (P) : y + z − = D (P) : x − 2y + = Câu 45 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A −4 B C 2i Câu 46 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (0; 1) B (−∞; 1) C (1; +∞) D D (−1; 0) Câu 47 Tâm I bán kính R mặt cầu (S ) : (x − 1) + (y + 2) + (z − 3) = là: A I(1; −2; 3); R = B I(1; 2; −3); R = C I(1; 2; 3); R = D I(−1; 2; −3); R = Câu 48 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = B S = −5 C S = −6 D S = 2 Câu 49 Cần chọn người cơng tác từ tổ có 30 người, số cách chọn A C30 B A330 C 330 D 10 z x−1 y+2 Câu 50 Đường thẳng (∆) : = = không qua điểm đây? −1 A A(−1; 2; 0) B (1; −2; 0) C (−1; −3; 1) D (3; −1; −1) - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001