Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình lập phương ABCD.A B C D có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ trung điểm cạnh CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng √ √ a 15 a a A B a 15 D C 3 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 B (0; 1) C (1; +∞) D ( ; +∞) A (0; ) 4 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền √ 2a Tính thể tích √ khối nón 4π 2.a3 π 2.a3 π.a3 2π.a3 A B C D 3 3 Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số đồng biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (1; +∞) ′ ′ ′ ′ √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng C Khơng có tiệm cận D Có tiệm cận ngang tiệm cận đứng 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng Câu Cho hàm số y = Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Cho khối lăng trụ đứng ABC · A′ B′C ′ √ có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A a B a C 2a D a 800π Câu 10 Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) Trang 1/5 Mã đề 001 √ 24 B Câu 11 Phần ảo số phức z = − 3i A B −2 A √ C D C −3 D 24 Câu 12 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x = + t x = + 2t y = + 3t y = −1 + 3t y = + 2t y = −1 + t A B C D z = −1 + t z = −1 + t z = + 3t z = −1 + 3t Câu 13 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 x2 + C B f (x) = −sinx + + C A f (x) = sinx + 2 R R C f (x) = sinx + x2 + C D f (x) = −sinx + x2 + C R2 R2 Câu 14 Nếu f (x) = [ f (x) − 2] A B C −2 D Câu 15 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = − C y′ = D y′ = x xln3 xln3 x Câu 16 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D 4 − 2i (1 − i)(2 + i) Câu 17 Phần thực số phức z = + 2−i + 3i 29 11 11 29 B C − D A − 13 13 13 13 Câu 18 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực là−3 phần ảo −2i C Phần thực −3 phần ảo là−2 D Phần thực phần ảo 2i + 2i + i2017 có tổng phần thực phần ảo 2−i B C D -1 (1 + i)(2 + i) (1 − i)(2 − i) Câu 20 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z số ảo B z = C z = z D |z| = z Câu 21 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = 21009 i C (1 + i)2018 = −21009 D (1 + i)2018 = −21009 i z2 Câu 22 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B C 11 D 13 Câu 19 Số phức z = A Câu 23 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực B Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức Câu 24 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = D P = 2i Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 C −22016 D −21008 + Trang 2/5 Mã đề 001 Câu 26 Giá trị A − e R0 −1 e x+1 dx B e C e − D −e Câu 27 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x + 2y + 2z + 15 = B x + 2y + 2z − 15 = C x − 2y + 2z + 15 = D x − 2y + 2z − 15 = Câu 28 Tìm hàm số F(x) không nguyên hàm hàm số f (x) = sin2x C F(x) = sin2 x D F(x) = −cos2 x A F(x) = −cos2x B F(x) = − cos2x R1 Câu 29 Tích phân e−x dx e−1 A B C e − D − e e e x+1 Câu 30 Tìm nguyên hàm F(x) hàm số f (x) = e , biết F(0) = e A F(x) = e x B F(x) = e x + C F(x) = e x+1 D F(x) = e2x Câu 31 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = Câu 32 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x + y + z − = B z − = C y − = D x − = Câu 33 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F ′ (x) + C = f (x) C F(x) = f ′ (x) D F(x) = f ′ (x) + C Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 97 85 B T = 13 C T = 13 D T = A T = 3 √ Câu 35 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| > C ≤ |z| ≤ D |z| < 2 2 Câu 36 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| C P = D P = −2016 A P = 2016 B max T = Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 9 1 A ; +∞ B ; C 0; D ; 4 4 Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − D P = (|z| − 4)2 2z − i Mệnh đề sau đúng? + iz A |A| < B |A| ≤ C |A| ≥ D |A| > √ 2 Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 3√ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 39 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Trang 3/5 Mã đề 001 Câu 41 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = C A = + i D A = −1 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C √ D 2 Câu 43 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 17 πa2 15 A B C D Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 45 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = + 2(ln a)2 C P = Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A ln + 5 B 3π ln + C D P = ln a cos x π F(− ) = π Khi giá trị sin x + cos x 6π D ln + 6π Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A B C 6π D 5 Câu 48 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = C m = m = −16 D m = Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D A D = (−1; 4) 3x + x−1 B D = (1; +∞) C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) r Câu 50 Tìm tập xác định D hàm số y = log2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001