Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x ≥ 0; y ≤ 18x3[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < π y > − 4π2 C Nếu < x < y < −3 D Nếux > thìy < −15 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x2 − 2x + C y = x D y = x3 − 2x2 + 3x + Câu Kết đúng? R sin3 x A sin2 x cos x = + C R C sin2 x cos x = cos2 x sin x + C sin3 x + C R D sin2 x cos x = −cos2 x sin x + C √ ′ ′ ′ ′ trụ cho là: Câu Cho lăng trụ ABC.A B C có đáy a, AA = √ √ 3a Thể tích khối lăng 3 A 3a B a C 3a D 3a √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H3) C (H2) D (H1) x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = − B y = C y = −1 D y = R R R R 2 B R sin2 x cos x = − Câu Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 45◦ C 60◦ D 30◦ Câu Đồ thị hàm số có dạng đường cong hình bên? A y = x2 − 4x + B y = x3 − 3x − C y = x4 − 3x2 + D y = Câu 10 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (3; +∞) C (2; 3) x−3 x−1 D (−∞; 3) Câu 11 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; 2) B (2; +∞) C (−∞; 1) D (1; +∞) Câu R12 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? A f (x)dx = sin x + x2 + C B f (x)dx = sin x + x2 + C R R C f (x)dx = − sin x + x2 + C D f (x)dx = − sin x + x2 + C Câu 13 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 22π 7π 512π A V = B V = C V = D V = 15 Trang 1/5 Mã đề 001 x−2 y−6 z+2 Câu 14 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ B 10 C √ D √ A √ 10 53 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 15 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường √ √ tròn (C) A r = B r = C r = D r = R2 R2 Câu 16 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A −1 B C D −9 Câu 17 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (3; +∞) B Hàm số cho đồng biến khoảng (−∞; 3) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho nghịch biến khoảng (1; 4) Câu 18 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −384 B 384 C −192 D 192 Câu 19 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 20 C r = 22 D r = Câu 20 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k √ z1 , z2 số phức 27 − i hoặcw = 27√+ i B w = + √27 hoặcw = − √27 A w = √ C w = − 27 − i hoặcw = − 27 + i D w = + 27i hoặcw = − 27i 1+i z Câu 21 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 25 15 B S = C S = D S = A S = 4 Câu 22 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B 2π C π D 3π Câu 23 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C √ D 13 √ Câu 24 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A |z| < B ≤ |z| ≤ C |z| > D < |z| < 2 2 Câu 25 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Trang 2/5 Mã đề 001 Câu 26 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 20 B r = 22 C r = D r = Câu 27 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 28 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 25π B C 5π D Câu 29 Cho số phức z thoả mãn (1 + z) số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Hai đường thẳng C Một đường thẳng D Parabol Câu 30 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 4π C π D 2π Câu 31 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C 10 D √ Câu 32 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 33 Trong không gian với hệ tọa độ (P) : x − 2y + z + = 0, cho hình hộp M biết M, M(0; 3; −2), M(2; 2; 1), D′ (3; 0; 1) Khi tọa độ điểm B là? A B(2; −1; 2) B B(2; −2; 1) C B(−1; 2; 2) D B(1; −2; −2) Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 2; 0),B(3; −2; 2),C(2; 3; 1) Khoảng cách từ trung điểm đoạn AB đến trọng tâm tam giác ABC A B C D Câu 35 Trong không gian với hệ trục tọa độ Oxyz, cho A(0; −1; 1), B(−2; 1; −1), C(−1; 3; 2) Biết ABCD hình bình hành, tạo độ điểm D B D(1; 3; 4) C D(1; 1; 4) D D(−1; −3; −2) A D(−1; 1; ) Câu 36 Trong không gian Oxyz, cho điểm M nằm mặt phẳng (Oxy)sao cho M không trùng với gốc tọa độ không nằm hai trục Ox, Oy, tọa độ điểm M (a, b, c , 0) A (0; 0; c) B (a; b; 0) C (a; 1; 1) D (0; b; a) Câu 37 Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A′ B′C ′ D′ biết A(1; −1; 0), B′ (2; 1; 3), C ′ (−1; 2; 2), a, b → Khi tọa độ điểm Oxy là? x−1 y z+2 A ∆ : = = B (α2 ) : 3x + 5y − z − = −1 C (α3 ) : 2x + 3y − z + = D (α1 ) : x − 2y + z − = Câu 38 √ hai điểm A(−1; 2; 3), B(0; √ Trong không gian cho √ 1; 1), độ dài đoạn ABbằng √ A 12 B C 10 D Câu 39 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Đồ thị hàm số khơng có tiệm cận B Đồ thị hàm số có điểm cực đại C Đồ thị hàm số cắt trục tung điểm (0; 1) D Điểm cực tiểu hàm số (0; 1) Câu 40 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) B Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) Trang 3/5 Mã đề 001 C Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) D Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) Câu 41 Cho hàm số y = f (x) có bảng biến thiên sau: x −∞ y′ +∞ −2 − − +∞ −2 y −∞ −2 Đồ thị hàm số y = f (x) có đường tiệm cận đứng tiệm cận ngang? A B C D Câu 42 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối tứ diện B Khối mười hai mặt C Khối lập phương D Khối bát diện Câu 43 Cho tứ diện OABC có cạnh OA, OB, OC đơi vng góc OA = OB = OC = Tính thể tích V khối tứ diện OABC 1 A V = B V = C V = D V = Câu 44 Tìm giá trị nhỏ hàm số f (x) = 2x3 − 3x2 − 12x + 10 đoạn [−3; 3] A 17 B −35 C −10 D −u (2; −2; 1), kết luận sau đúng? Câu 45 Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Câu 46 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = −2 C m = D m = 13 đúng? x B Hàm số nghịch biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 47 Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến (0; +∞) C Hàm số đồng biến R , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A B √ C 3π D 3π 3 Câu 48 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu 49 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D Câu 50 Bất đẳng thức sau đúng? A 3π < 2π √ √ e π C ( − 1) < ( − 1) B 3−e > 2−e √ √ π e D ( + 1) > ( + 1) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001