Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A −1 < m < B m ≥ C m ∈ (0; 2) D m ∈ (−1; 2) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh √ A πRl B π l2 − R2 C 2πRl D 2π l2 − R2 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; 3; 1) D M ′ (2; −3; −1) Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Cho hình S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: √ chóp 3a b 3ab2 A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 450 C 360 D 600 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 20a3 C 100a3 D 60a3 Câu Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (0; −3) B (1; −4) C (−3; 0) D (−1; −4) Câu 10 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C 3a D Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = − ty = tz = + t B x = + ty = tz = − t C x = + 2ty = 2tz = + t D x = + ty = tz = + t Câu 12 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 + 12i B w = −8 − 12i C w = + 12i D w = −8 − 12i Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ A (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 B (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 2 C (x − 1) + (y − 4) + (z + 2) = 40 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Trang 1/5 Mã đề 001 Câu 14 Đạo hàm hàm số y = (2x + 1) tập xác định − − A − (2x + 1) B (2x + 1) ln(2x + 1) − − D 2(2x + 1) ln(2x + 1) C − (2x + 1) Câu 15 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 220 55 14 Câu 16 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B C −2 D (1 + i)(2 − i) Câu 17 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = − Câu 18 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B Q(−2; −3) C N(2; 3) D M(2; −3) Câu 19 Tính √ √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i = √ 34 34 B |z| = 34 C |z| = 34 D |z| = A |z| = 3 − 2i (1 − i)(2 + i) Câu 20 Phần thực số phức z = + 2−i + 3i 29 11 29 11 A − B C D − 13 13 13 13 Câu 21 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B |z2 | = |z|2 C z · z = a2 − b2 D z + z = 2bi A z − z = 2a Câu 22 Với số phức z, ta có |z + 1|2 A z + z + B z · z + z + z + C z2 + 2z + D |z|2 + 2|z| + Câu 23 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D (1 + i)(2 + i) (1 − i)(2 − i) Câu 24 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z số ảo B z = z C z = D |z| = z Câu 25 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −7 − 7i B w = − 3i C w = + 7i D w = −3 − 3i Câu 26 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; 4) B (3; −1; −4) C (−3; −1; −4) D (3; 1; 4) Câu 27 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C −2 D Câu 28 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z − = C 2x + y − z − = D −2x + y − z + = Trang 2/5 Mã đề 001 Câu 29 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x + y + z − = B y − = C z − = D x − = Câu 30 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? a A b f (x) = F(b) − F(a) B Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo công thức S = F(b) − F(a) b Rb C a f (2x + 3) = F(2x + 3) a Rb D a k · f (x) = k[F(b) − F(a)] R8 R4 R4 Câu 31 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R8 A [4 f (x) − 2g(x)] = −2 B f (x) = −5 R4 R8 C [ f (x) + g(x)] = 10 D f (x) = Câu 32 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z + = B 3x − 2y + z − = C 3x − 2y + z − 12 = D 3x + 2y + z − = R1 Câu 33 Tích phân e−x dx 1 e−1 B − C D e − A e e e √ Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm M Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = √ 2 Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 38 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm P Trang 3/5 Mã đề 001 Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ A P = B P = 26 C P = + D P = 34 + 2 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B D √ C 2 √ √ √ 42 √ Câu 41 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 + z + z2 Câu 42 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 5 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 44 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 33π 32π A B C 6π D 5 3x Câu 45 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = −2 D m = Câu 46 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ πa2 17 πa2 15 πa2 17 πa2 17 B C D A 4 Câu 47 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − B y = −x3 − x2 − 5x 4x + C y = x4 + 3x2 D y = x+2 Câu 48 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m > m < −1 C m < −2 D m > m < − Câu 49 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 12a3 C 6a3 D 4a3 Câu 50 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001