Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C √ D 13 Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = + B w = 1√+ 27i hoặcw =√1 − 27i √ 27 hoặcw = −√ 27 C w = − 27 − i hoặcw = − 27 + i D w = 27 − i hoặcw = 27 + i √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = z−z =2? Câu Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Elip B Một Parabol C Một đường tròn D Một đường thẳng Câu Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 2π C 3π D π Câu Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 √ Câu Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2| − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 33 B |z| = C |z| = 10 D |z| = 50 Câu (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| + 2|z√− 1| √ √ √ A max T = B max T = 10 C max T = D max T = Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x=5+t x = + 2t x = + 2t x = + 2t y = + 2t y = + 3t y = −1 + t y = −1 + 3t A B C D z = + 3t z = −1 + t z = −1 + 3t z = −1 + t Câu 10 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Câu 11 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 12 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πr2 l B πrl C πrl2 D 2πrl 3 Trang 1/4 Mã đề 001 Câu 13 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 x2 A f (x) = sinx + + C B f (x) = −sinx + + C 2 R R C f (x) = −sinx + x2 + C D f (x) = sinx + x2 + C Câu 14 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = xπ−1 C y′ = xπ−1 D y′ = πxπ−1 π Câu 15 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 225 B 210 C 105 D 30 Câu 16 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 48 B 89 C 90 D 49 Câu 17 Cho hàm số y = f (x) có f ′ (2) = Đặt g(x) = f (x2 + 1), giá trị g′ (1) A B C 12 D 1 R ) = a ln + b ln với a, b số nguyên Khẳng định Câu 18 Biết ( x + 3x + đúng? A a + b = −2 B a + 2b = C a + b = D a + 2b = Câu 19 Có số nguyên dương a cho ứng với a có hai số nguyên b thỏa mãn (b − 2)(b − + log2 a) < 0? A 67 B 64 C 65 D 66 Câu 20 Đạo hàm hàm số y = ln(3x + 1) A y′ = B y′ = 3x + 3x + ln 3x + √ √ Câu 21 Cho hình chóp S ABC có đáy tam giác vng A AB = 3, AC = 7, S A = Hai mặt bên (S AB) (S AC) tạo với đáy góc 450 600 Thể tích khối chóp cho √ √ 7 B C D A 6 Câu 22 Xét tất cặp số nguyên dương (a; b), a ≥ b cho ứng với cặp số có 50 số nguyên dương x thỏa mãn ln a − ln x < ln b Hỏi tổng a + bnhỏ bao nhiêu? A 50 B 36 C 11 D 22 C y′ = (3x + 1)2 D y′ = Câu 23 Nếu hàm số y = f (x) đồng biến khoảng (−1; 2) hàm số y = f (x + 2) đồng biến khoảng khoảng sau đây? A (1; 4) B (−3; 0) C (−1; 2) D (−2; 4) Câu 24 Kí hiệu S tập tất số nguyên m cho phương trình x +mx+1 = (3 + mx)39x có nghiệm thuộc khoảng (1; 9) Số phần tử S A 12 B C 11 D Câu 25 Cho hình chóp S ABC có đáy tam giác vng, cạnh huyền BC = a Hình chiếu vng góc S lên mặt(ABC) trùng với trung điểm BC Biết S B = a Số đo góc S A mặt phẳng (ABC) A 60◦ B 30◦ C 90◦ D 45◦ Câu 26 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(1; 1; 2) C I(0; 1; −2) D I(0; −1; 2) Câu 27 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −3 C f (−1) = D f (−1) = −1 Trang 2/4 Mã đề 001 R Câu R28 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R D f (2x − 1)dx = F(2x − 1) + C C f (2x − 1)dx = F(2x − 1) + C Câu 29 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = 52 C yCD = D yCD = −2 Câu 30 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số nghịch biến khoảng (−3; 1) Câu 31 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu 32 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 1 D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 Câu 33 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B [22; +∞) C ( ; 2] [22; +∞) D ( ; +∞) A [ ; 2] [22; +∞) 4 √ Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm Q Câu 35 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm R Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = (|z| − 4)2 D P = |z|2 − Câu 38 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = 34 + C P = 26 D P = + A P = Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ A B C 10 D 15 Trang 3/4 Mã đề 001 √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 40 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 z Câu 41 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ C 2 D A B Câu 42 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = 2016 B P = C P = −2016 D max T = −a = (4; −6; 2) Phương Câu 43 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t C x = −2 + 4ty = −6tz = + 2t B x = + 2ty = −3tz = −1 + t D x = + 2ty = −3tz = + t Câu 44 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A −x + 2y + 2z + = B x + 2y + 2z + = C x − 2y − 2z − = D 3x − 4y + 6z + 34 = Câu 45 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(−2; 5) B M(5; 2) C M(−5; −2) D M(5; −2) Câu 46 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 364 B S = 1979 C S = 84 D S = 96 Câu 47 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (2; 3; −4) −n = (−2; 3; 1) −n = (−2; 3; 4) A → B → C → D → Câu 48 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; 3] B (0; 3] C [−3; 3] D (−∞; −3] ∪ [3; +∞) − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 49 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ → √ → − − → − − − −a = A c = B → C b ⊥→ c D b ⊥→ a Câu 50 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(1; −2) B M(−2; −4) C x = −2 D x = - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001