Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 GọiM là điểm biểu diễn số phức z = 3−4i và M′ là điểm biểu diễn c[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 1+i Câu GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z ′ mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM 25 15 15 25 A S = B S = C S = D S = 4 √ Câu (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 3 B |z| < C < |z| < D |z| > A ≤ |z| ≤ 2 2 Câu Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B 2π C 4π D π Câu Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x + y − = C x − y + = D x − y + = z Câu Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác vuông B Tam giác OAB tam giác C Tam giác OAB tam giác cân D Tam giác OAB tam giác nhọn Câu Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w√ = x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k A w = − 27 27 + i B w = 27√− i hoặcw = 27 +√i √ − i hoặcw = − √ C w = + 27 hoặcw = − 27 D w = + 27i hoặcw = − 27i √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = x−2 y−1 z−1 Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi (P) 2 −3 mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 R4 R4 R4 Câu 10 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C D −1 Câu 11 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d > R C d = R D d = Câu 12 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D 2 Trang 1/4 Mã đề 001 Câu 13 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n1 = (−1; 1; 1) C → n2 = (1; −1; 1) D → n4 = (1; 1; −1) Câu 14 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 11 + B 28 C 18 + D 14 Câu 15 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết a, thể tích khối lăng trụ cho khoảng cách từ A đến mặt phẳng (A′ BC) √ √ √ √ 3 3 A a B a C 2a D a R2 R2 Câu 16 Nếu f (x) = [ f (x) − 2] A −2 B C D n x2 Câu 17 Tìm hệ số x khai triển ( − ) , biết n số nguyên dương thỏa mãn 5Cnn−1 − Cn3 = x 35 35 35 35 A B − C − D 16 16 Câu 18 Cho hình chóp S ABC có đáy tam giác vng, cạnh huyền BC = a Hình chiếu vng góc S lên mặt(ABC) trùng với trung điểm BC Biết S B = a Số đo góc S A mặt phẳng (ABC) A 60◦ B 30◦ C 90◦ D 45◦ Câu 19 Cho hình chóp S ABCD có tất cạnh a Gọi φ góc hai mặt phẳng (S BD) (S CD) Mệnh √ √ đề sau đúng? √ √ B tan φ = D tan φ = A tan φ = C tan φ = 2 Câu 20 Cho hàm số f (x) có đạo hàm f ′ (x) = (x2 − 1)(x − 4) với x ∈ R Hàm số g(x) = f (−x) có điểm cực đại? A B C D ′ Câu 21 Cho hàm số y = f (x) có đạo hàm R f (x) = (x − 1)(x + 2) với x Số giá trị nguyên m cho hàm số y = f ( 2x3 + 3x2 − 12x − m ) có 11 điểm cực trị A 23 B 27 C 24 D 26 Câu 22 Cắt hình nón √ mặt phẳng qua trục ta thiết diện tam giác vng cân có cạnh huyền a Thể tích khối √ √ nón √ √ 3 πa πa πa3 πa3 A V = B V = C V = D V = Câu 23 Đặt log2 = a, log2 = b Khi log5 b a A a − b B C a b D ab Câu 24 Cho hàm số y = x4 − 3x2 + 2023 có đồ thị (C) Hệ số góc tiếp tuyến (C) điểm có hồnh độ −1 A B −10 C 10 D −2 Câu 25 Cho khối lăng trụ tam giác ABC.A′ B′C ′ Biết thể tích khối chóp A.BA′C ′ 12, thể tích khối lăng trụ cho A 18 B 72 C 24 D 36 Trang 2/4 Mã đề 001 R Câu 26 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C √ Câu 27 Đạo hàm hàm số y = log 3x − là: 2 A y′ = B y′ = D y′ = C y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 28 Đường cong hình bên đồ thị hàm số nào? A y = x4 + B y = −x4 + C y = −x4 + 2x2 + D y = x4 + 2x2 + Câu 29 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(1; 1; 2) C I(0; −1; 2) D I(0; 1; 2) Câu 30 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 31 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = −5 C f (−1) = −3 D f (−1) = Câu 32 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(1; 2; 0) C A(0; 0; 3) D A(0; 2; 3) Câu 33 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B −1 C D π z số thực Tính giá trị biểu Câu 34 Cho số phức z , cho z số thực w = + z2 |z| thức bằng? + |z|2 √ 1 A B C D √ 2 Mệnh đề Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2z − i Mệnh đề sau đúng? + iz A |A| ≤ B |A| ≥ C |A| > D |A| < √ Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 36 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Câu 38 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Trang 3/4 Mã đề 001 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 4)2 = Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A B C D √ 2 √ Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a2 + b2 + c2 − ab − bc − ca C D a + b + c Câu 42 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D π R4 Câu 43 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 − π2 + 16π − π2 + 16π − 16 π2 + 15π B C D A 16 16 16 16 Câu 44 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) −n = (−2; 3; 4) A → B → C → D → −a = (4; −6; 2) Phương Câu 45 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t C x = −2 + 2ty = −3tz = + t D x = −2 + 4ty = −6tz = + 2t Câu 46 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 B M(− ; ; −1) C M(− ; ; −1) D M( ; ; −1) A M(− ; ; 2) 4 4 √ Câu 47 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ A d = a B d = 2a C d = a D d = a Câu 48 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc φ =? √ tạo hai mặt phẳng (S AC), (S BC) Tính cos√ 3 15 A B C D 5 x+1 Câu 49 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = x = B y = x = C y = x = −1 D y = −1 x = Câu 50 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; −2; 3); R = B I(1; 2; 3); R = C I(−1; 2; −3); R = D I(1; 2; −3); R = - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001