Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qu[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; 2; 3) B (1; −2; 3) C (1; 2; −3) D (−1; −2; −3) R4 R4 R4 Câu Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C D −1 Câu Cho số phức z = + 9i, phần thực số phức z2 A 85 B −77 C 36 D Câu Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 60◦ B 30◦ C 45◦ D 90◦ Câu Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 210 C 105 D 225 Câu R6 Cho hàm số f (x) = cos x + x Khẳng định đúng? R x2 B f (x)dx = − sin x + x2 + C A f (x)dx = sin x + + C R R D f (x)dx = sin x + x2 + C C f (x)dx = − sin x + x2 + C Câu Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: A y′ = 1x B y′ = x ln1 C y′ = lnx3 D y′ = − x ln1 Câu Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; 2) C (−∞; 1) D (1; +∞) Câu Cho khối lăng trụ đứng ABC.A′ B′C ′ có √ đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 B C D A 6 Câu 10 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A C10 B 103 C A310 D 310 Câu 11 Cho hàm số f (x) liên tục R R2 ( f (x) + 2x) = Tính A −1 Câu 12 Nếu R6 A −2 f (x) B C −9 6 R R f (x) = g(x) = −4 ( f (x) + g(x)) B R2 D C −6 D Câu 13 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (1; 4) B Hàm số cho đồng biến khoảng (−∞; 3) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho nghịch biến khoảng (3; +∞) Trang 1/4 Mã đề 001 1 Câu 14 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C Có giá trị nguyên D 16 Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; 3) −n = (1; −2; −1) −n = (1; 3; −2) −n = (1; 2; 3) A → B → C → D → Câu 16 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (1; −4) B (−1; −4) C (0; −3) D (−3; 0) Câu 17 Trong mặt phẳng toạ độ Oxy, cặp vectơ sau có phương? √ √ A ⃗c = ( 2; 2) d⃗ = (2; 2) B ⃗a = (− ; 2) ⃗b = (2; −6) C = (1; −1) = (3; 3) D ⃗u = (2; 1) ⃗v = (2; −6) Câu 18 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (−2; −1) B − n→∆ (1; −1) C − n→∆ (1; 1) D − n→∆ (2; −1) Câu 19 Số cách chia 10 học sinh thành ba nhóm có 2, 3, học sinh là: 2 A C10 + C83 + C55 B C10 + C53 + C22 C C10 · C83 · C55 D C10 + C10 + C10 Câu 20 Có cách xếp sách Văn khác sách Toán khác kệ sách dài sách Văn phải xếp kề nhau? A 5!.8! B 5!.7! C 2.5!.7! D 12! −−→ −−→ Câu 21 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(2; −2), C(3; 1) Toạ độ vectơ AB + BC là: A (−4; −1) B (4; 1) C (−4; 1) D (4; −1) Câu 22 Một quán ăn phục vụ ăn vặt loại nước uống Hỏi bạn Mai có cách để gọi ăn loại nước uống? A cách B cách C cách D 10 cách Câu 23 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (1; 2), ⃗b = (3; −3) Toạ độ vectơ ⃗c = 3⃗a − 2⃗b là: A (9; 0) B (−3; 12) C (−3; 0) D (3; 12) Câu 24 Giả sử ta dùng màu để tô cho nước khác đồ khơng có màu dùng hai lần Số cách để chọn màu cần dùng là: 5! 5! A B 53 C D 3!2! 2! −−→ −−→ Câu 25 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(2; −2), C(3; 1) Toạ độ vectơ AB + BC là: A (−4; −1) B (4; −1) C (−4; 1) D (4; 1) Câu 26 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (0; −2; 0) C (0; 6; 0) D (−2; 0; 0) Câu 27 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x2 − 2x + C y = x3 − 2x2 + 3x + D y = x3 p Câu 28 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < y < −3 C Nếu < x < π y > − 4π2 D Nếux = y = −3 Trang 2/4 Mã đề 001 Câu 29 Hàm số sau đồng biến R? A y = tan x C y = x4 + 3x2 + B y = x√2 √ D y = x2 + x + − x2 − x + 1 Câu 30 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) Câu 31 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 60a3 C 30a3 D 100a3 Câu 32 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a 3a a 2a B C √ D √ A 5 Câu 33 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (2; −1; 2) D (−2; 1; 2) Câu 34 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ B C 10 D 15 A √ điểm A hình vẽ bên điểm Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm P Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm P D điểm S Câu 37 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C D 2 z Câu 39 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Trang 3/4 Mã đề 001 Câu 41 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 √ √ √ 42 √ Câu 42 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z B < |z| < C < |z| < D < |z| < A < |z| < 2 2 Câu 43 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; −3] ∪ [3; +∞) B (−∞; 3] C (0; 3] D [−3; 3] Câu 44 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x + C A cos 3xdx = sin 3x + C B cos 3xdx = − R R sin 3x C cos 3xdx = sin 3x + C D cos 3xdx = + C Câu 45 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a D + log5 a x−1 y+2 z Câu 46 Đường thẳng (∆) : = = không qua điểm đây? −1 A A(−1; 2; 0) B (3; −1; −1) C (−1; −3; 1) D (1; −2; 0) Câu 47 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 1979 B S = 364 C S = 96 D S = 84 Câu 48 Thể tích khối lập phương có cạnh 3a là: A 2a3 B 3a3 C 8a3 D 27a3 Câu 49 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(−1; 2; −3); R = B I(1; 2; 3); R = C I(1; 2; −3); R = D I(1; −2; 3); R = R Câu 50 6x5 dxbằng B 30x4 + C C x6 + C D 6x6 + C A x6 + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001