Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tập hợp điểm biểu diễn các số phức w = (1+ i)z+ 1 với z là số phứ[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B π C 2π D 4π −2 − 3i Câu Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài √ MN √ A MN = B MN = C MN = D MN = Câu Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Parabol B Hai đường thẳng C Đường tròn D Một đường thẳng Câu Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C −1 D √ Câu Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 10 C |z| = D |z| = 50 A |z| = 33 √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = 27√− i hoặcw = 27 √ + i B w = + 27i hoặcw = − √ √ 27i C w = + 27 hoặcw = − 27 D w = − 27 − i hoặcw = − 27 + i Câu Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = C y′ = − x xln3 xln3 D y′ = x Câu 10 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 30◦ B 45◦ C 60◦ D 90◦ Câu 11 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = + 2t y = −1 + t y = −1 + 3t y = + 3t B C D A z = −1 + t z = + 3t z = −1 + 3t z = −1 + t Câu 12 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D 2 Câu 13 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Trang 1/4 Mã đề 001 x−2 y−1 z−1 = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 14 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : Câu 15 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d > R C d = D d = R Câu 16 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; −6) C (6; 7) D (7; 6) Câu 17 Cho hàm số f (x) có đạo hàm f ′ (x) = (x2 − 1)(x − 4) với x ∈ R Hàm số g(x) = f (−x) có điểm cực đại? A B C D Câu 18 Cho cấp số nhân (un ) có u1 = 2, cơng bội q = Hỏi u100 bao nhiêu? A 3.2100 B 2.3100 C 3.299 D 2.399 Câu 19 Nếu hàm số y = f (x) đồng biến khoảng (−1; 2) hàm số y = f (x + 2) đồng biến khoảng khoảng sau đây? A (−2; 4) B (−1; 2) C (−3; 0) D (1; 4) Câu 20 Biết R1 đúng? A a + b = ( x2 ) = a ln + b ln với a, b số nguyên Khẳng định + 3x + B a + 2b = C a + 2b = D a + b = −2 Câu 21 Cho hàm số y = f (x) có f ′ (2) = Đặt g(x) = f (x2 + 1), giá trị g′ (1) A B C 12 D Câu 22 Cho hàm số f (x) = ax3 − 4(a + 2)x + với a tham số Nếu max f (x) = f (−2) max f (x) (−∞;0] A −8 B −9 C Câu 23 Thể tích khối cầu có bán kính 2a 32 A 4πa3 B πa3 C πa3 3 [0;3] D D 32πa3 ′ Câu 24 Cho hàm số y = f (x) có đạo hàm R f (x) = (x − 1)(x + 2) với x Số giá trị nguyên m cho hàm số y = f ( 2x3 + 3x2 − 12x − m ) có 11 điểm cực trị A 26 B 23 C 24 D 27 Câu 25 Phương trình log x 5.log5 x = có nghiệm nguyên thuộc đoạn [−10; 10]? A B 10 C D 21 R dx Câu 26 Biết = ln T Giá trị T là: 2x − √ A T = B T = C T = 81 D T = ; y = 0; x = 0; x = Câu 27 Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln + B − ln − C ln − D − ln 2 2 Câu 28 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = 36 C yCD = −2 D yCD = Trang 2/4 Mã đề 001 Câu 29 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π B V = C V = D V = A V = 3 √ Câu 30 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B a C D A 2 Câu 31 Cho a > a , Giá trị alog A B √ a bằng? √ C D Câu 32 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B C D − 6 ′ Câu 33 Cho hình trụ có hai đáy hai đường tròn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 34 Cho a, b, c số thực z = − + 2 A a2 + b2 + c2 + ab + bc + ca B a + b + c C D a2 + b2 + c2 − ab − bc − ca Câu 35 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = −2016 C P = D P = 2016 Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? D A B C 2 √ √ √ 42 √ Câu 37 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| > B |z| < C ≤ |z| ≤ D < |z| < 2 2 Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ A P = + B P = C P = 26 D P = 34 + Trang 3/4 Mã đề 001 Câu 42 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 43 Đường cong hình bên đồ thị hàm số đây? A y = −x3 + 3x2 + B y = x3 − 3x2 + C y = x4 − 2x2 + D y = −x4 + 2x2 + π R4 Câu 44 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 15π π2 + 16π − A B 16 16 Câu 45 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại π2 − C 16 π2 + 16π − 16 D 16 B Hàm số đạt cực đại D Hàm số đạt cực đại Câu 46 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 4πa2 B 5πa2 C 2πa2 D 6πa2 y z−2 x+1 = = Viết Câu 47 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : x − 2y + = B (P) : y − z + = C (P) : y + z − = D (P) : x − 2z + = Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(5; 5; 0) B M(−2; 6; −4) C M(2; −6; 4) D M(−2; −6; 4) Câu 49 Với a số thực dương tùy ý, log5 (5a) A + log5 a B − log5 a C − log5 a D + log5 a Câu 50 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; 3] B (−∞; −3] ∪ [3; +∞) C [−3; 3] D (0; 3] - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001