Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log3 ( x2 + y2 + x ) +[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Có cặp số nguyên (x; y) thỏa mãn log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 48 B 89 C 90 D 49 Câu Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; 2; 3) C (−1; −2; −3) D (1; −2; 3) Câu Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 105 C 225 D 210 Câu Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+ x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B 52 C 34 D 14 A 21 Câu Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox A 169 B 16 C 16π D 16π 15 15 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx C D 43 A B 23 Câu Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Gọi A B hai điểm thuộc Câu Cho khối nón có đình S , chiều cao thể tích 800π đường trịn đáy cho AB = 12, khoảng cách từ tâm của√đường tròn đáy đến mặt √ phẳng (S AB) 24 A B 24 C D Câu Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A 3a B C D Câu 10 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A P(4 ; −1 ; 3) B Q(4 ; ; 2) C N(1 ; ; 7) D M(0 ; ; 2) Câu 11 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 12 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −3 C D −2 Câu 13 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 60 B 50 C 40 D 30 Trang 1/4 Mã đề 001 Câu 14 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 2; 3) −n = (1; −2; 3) −n = (1; 3; −2) −n = (1; −2; −1) A → B → C → D → Câu 15 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 17 C 20 D 13 Câu 16 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−1 ; 4) B (−2 ; 0) C (0 ; +∞) D (−∞ ; −2) Câu 17 Có cách chọn hai học sinh từ nhóm gồm 10 học sinh? A 102 B A210 C 210 D C10 Câu 18 Cho α góc tạo hai đường thẳng ∆1 : 2x − 3y + = ∆2 : 3x + y − 14 = Giá trị cosa là: √ −3 −3 B √ C √ D A 130 130 130 130 Câu 19 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (2; −1) B − n→∆ (1; −1) C − n→∆ (1; 1) D − n→∆ (−2; −1) Câu 20 Phương trình tổng quát đường thẳng ∆ qua điểm M(x0 ; y0 ) có vectơ pháp tuyến ⃗n(a; b) là: x − x0 y − y0 A a(x − x0 ) + b(y − y0 ) = B = a b C b(x − x0 ) − a(y − y0 ) = D a(x + x0 ) + b(y + y0 ) = Câu 21 Từ Hà Nội bay vào Đà Nẵng có chuyến bay trực tiếp ba hãng máy bay Hãng thứ cung cấp chuyến bay ngày Hãng thứ hai cung cấp chuyến bay ngày Hãng thứ ba cung cấp chuyến bay ngày Hỏi ngày có cách bay trực tiếp từ Hà Nội vào Đà Nẵng? A 16 cách B cách C 12 cách D cách Câu 22 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 34! 10! 10 D A A10 B C34 C 34 (34 − 10)! 10! Câu 23 Hệ số x3 khai triển (2x + 1)4 là: A 10 B C 32 D Câu 24 Đội tuyển tốn có bạn nam bạn nữ Giáo viên phải chọn nhóm bốn bạn Hỏi giáo viên có cách chọn? 12! A A412 B 12! C D C12 4! → − Câu 25 Trong mặt phẳng cho 2010 điểm phân biệt Hỏi có vectơ khác có điểm đầu điểm cuối lấy từ 2010 điểm cho? A 4039137 B 4038090 C 4167114 D 167541284 √ x Câu 26 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H3) C (H2) D (H1) Câu 27.√Hình nón có bán kính √ đáy R, đường sinh l diện tích xung quanh 2 A 2π l − R B π l2 − R2 C 2πRl D πRl Câu 28 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 21 C R = D R = 29 Trang 2/4 Mã đề 001 Câu 29 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 12 (m) B S = 20 (m) C S = 28 (m) D S = 24 (m) Câu 30 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số đồng biến R C Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R x tập xác định Câu 31 Giá trị nhỏ hàm số y = x +1 1 A y = −1 B y = C y = − D y = R R R R 2 R √3 Câu 32 Tính I = 7x + 1dx 21 A I = 45 28 x π Câu 33 Biết F(x) nguyên hàm hàm số f (x) = F( )= cos2 x π ln π π ln π π ln π B F( ) = + C F( ) = − A F( ) = − 4 4 B I = 20 C I = D I = 60 28 π π √ Tìm F( ) π π ln D F( ) = + √ 2 Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ √ 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = D P = C P = 2 Câu 36 Gọi z1 ; z2 hai nghiệm phương trình z − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −21008 C −22016 D 21008 + z + z2 Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = D A = −1 √ Câu 39 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 − ab − bc − ca 2 C a + b + c + ab + bc + ca D Câu 40 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 √ Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Trang 3/4 Mã đề 001 Biết điểm biểu diễn số phức ω = số phức ω A điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm N C điểm Q D điểm M Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm R C điểm S x+1 Câu 43 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = −1 x = B y = x = C y = x = Câu 44 Biết R3 A f (x)dx = R3 g(x)dx = Khi R3 D điểm P D y = x = −1 [ f (x) + g(x)]dx B C D −2 √ 2, OD = Câu 45 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ B d = a C d = 2a D d = a A d = a x−1 y+2 z Câu 46 Đường thẳng (∆) : = = không qua điểm đây? −1 A (1; −2; 0) B (3; −1; −1) C (−1; −3; 1) D A(−1; 2; 0) Câu 47 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A m > −4 B −4 < m < −3 C −4 ≤ m < −3 D −4 < m ≤ −3 Câu 48 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (−∞; 4) B S = [6; +∞) C S = (7; +∞) D S = (−∞; 5] Câu 49 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x B y′ = 2023 x ln 2023 C y′ = x.2023 x−1 D y′ = 2023 x ln x Câu 50 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 B −16 C D A 16 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001