LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y = ( √ π)sin 2x trên R bằng? A 1 B 0 C √ π D π Câu 2[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ sin 2x Câu Giá trị lớn hàm số y = ( π) A B R bằng? √ C π D π Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + ln b B ln(ab2 ) = ln a + (ln b)2 a ln a C ln( ) = D ln(ab) = ln a ln b b ln b Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 B (m2 ) C (m ) D (m2 ) A 3(m2 ) x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x − y − 2z = C (P) : x + y + 2z = D (P) : x − y + 2z = Câu Đường cong hình bên đồ thị hàm số nào? A y = x4 + B y = x4 + 2x2 + C y = −x4 + D y = −x4 + 2x2 + Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A < m < B −2 ≤ m ≤ C m = D −2 < m < Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − m2 − 12 m2 − 12 A B C D 2m 2m 2m m Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 8π 32π 32 A V = B V = C V = D V = 5 Câu Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m < −1 B −1 ≤ m ≤ C −1 ≤ m < D m > Câu 10 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A 2i B C −4 R Câu 11 6x5 dxbằng A x6 + C B 6x6 + C C x6 + C D D 30x4 + C Câu 12 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; 2) B M(5; −2) C M(−2; 5) D M(−5; −2) Câu 13 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 64 B 512 C D 128 Trang 1/5 Mã đề 001 Câu 14 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx 32 26 C D 3 Câu 15 Cần chọn người cơng tác từ tổ có 30 người, số cách chọn A 10 B A330 C C30 D 330 A 10 B Câu 16 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(1; −2) B x = −2 C M(−2; −4) D x = Câu 17 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (6; 7) C (−6; 7) D (7; 6) Câu 18 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (0; 1) C (1; 2) D (1; 0) R4 R4 R4 Câu 19 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C D −1 Câu 20 Tích tất nghiệm phương trình ln2 x + ln x − = B −3 C −2 D A e13 e2 Câu 21 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n2 = (1; −1; 1) C → n3 = (1; 1; 1) D → n1 = (−1; 1; 1) Câu 22 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 15 B C D 17 Câu 23 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 14 B 43 C 25 D 12 Câu 24 Cho cấp số nhân (un ) với u1 = công bội q = 12 Giá trị u3 A B 12 C 27 D 14 Câu 25 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (3; +∞) C (1; 3) D (−∞; 1) Câu 26 Đồ thị hàm số có dạng đường cong hình bên? x−3 x−1 Câu 27 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B −1 C D A y = x4 − 3x2 + B y = x2 − 4x + C y = x3 − 3x − D y = Câu 28 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 60◦ C 90◦ D 30◦ Câu 29 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Câu 30 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B (−∞; 1) C [1; +∞) D (1; +∞) Trang 2/5 Mã đề 001 Câu 31 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B 17 C D 15 Câu 32 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (−2; −4; −6) C (−1; −2; −3) D (1; 2; 3) Câu 33 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D Câu 34 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ B max T = 10 C max T = D max T = A max T = Câu 35 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 2π B π C 3π D 4π Câu 36 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ A MN = B MN = C MN = D MN = √ Câu 37 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 38 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ C √ B √ D 13 z−z =2? Câu 39 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Parabol C Một đường tròn D Một Elip 1+i Câu 40 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 25 15 15 A S = B S = C S = D S = 4 Câu 41 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A π B 2π C 4π D 3π Câu 42 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w√ = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = −√ 27 − i hoặcw =√− 27 + i B w = + √27 hoặcw = − √27 C w = 27 − i hoặcw = 27 + i D w = + 27i hoặcw = − 27i Câu 43 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 3 Câu 44 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D Trang 3/5 Mã đề 001 Câu 45 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 6π ln + 5 C π cos x F(− ) = π Khi giá trị sin x + cos x 6π D 3π ln + Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ a3 15 A 16 √ a3 B √ a3 15 C √ a3 15 D Câu 47 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ 125π A √ 500π B √ 250π C √ 400π D d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) A 2a √ B a C a √ D a Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A −4 B C D −2 Câu 50 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001