LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền √ √ 3bằng 2a Tính thể tích 3của khối nón 2π.a 4π 2.a3 π.a3 π 2.a B C D A 3 3 Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B m = C −2 < m < D < m < Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a a 15 a A a 15 B C D 3 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 B (0; 1) C (1; +∞) D ( ; +∞) A (0; ) 4 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Có tiệm cận ngang tiệm cận đứng C Khơng có tiệm cận D Khơng có tiệm cận ngang có tiệm cận đứng Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = −2 B M(1; −2) C M(−2; −4) D x = Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x + 2y + 2z + = B 3x − 4y + 6z + 34 = C x − 2y − 2z − = D −x + 2y + 2z + = R Câu 11 6x5 dxbằng A x6 + C B 30x4 + C C x6 + C D 6x6 + C Trang 1/5 Mã đề 001 x−1 y+2 z Câu 12 Đường thẳng (∆) : = = không qua điểm đây? −1 A (3; −1; −1) B (1; −2; 0) C A(−1; 2; 0) D (−1; −3; 1) Câu 13 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B 2i C −4 D −a = (4; −6; 2) Phương Câu 14 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = + t B x = −2 + 4ty = −6tz = + 2t C x = + 2ty = −3tz = −1 + t D x = −2 + 2ty = −3tz = + t Câu 15 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 6 27 27 27 B z = − − i C z = − + i D z = + i A z = − i 5 5 5 5 Câu 16 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 B M( ; ; −1) C M(− ; ; −1) D M(− ; ; 2) A M(− ; ; −1) 4 4 R4 R4 R4 Câu 17 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A −1 B C D Câu 18 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 25 B 12 C 41 D 43 Câu 19 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 22 a3 B 2a3 C 62 a3 D 42 a3 Câu 20 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A 2a C 22 a D 3 a B 33 a Câu 21 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d < R C d = R D d = Câu R22 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? A f (x)dx = sin x + x2 + C B f (x)dx = − sin x + x2 + C R R C f (x)dx = − sin x + x2 + C D f (x)dx = sin x + x2 + C Câu 23 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (−∞; 1) C (3; +∞) D (1; 3) Câu 24 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (1; −2; 3) C (−1; 2; 3) D (1; 2; −3) Câu 25 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (0; −2) B (0; 2) C (−2; 0) D (2; 0) Câu 26 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A 12 B C D 11 Trang 2/5 Mã đề 001 Câu 27 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (1; 2) C (1; +∞) D (2; +∞) x−1 y−2 z+3 Câu 28 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A P(1; 2; 3) B N(2; 1; 2) C M(2; −1; −2) D Q(1; 2; −3) R dx = F(x) + C Khẳng định đúng? Câu 29 Cho x A F ′ (x) = − B F ′ (x) = C F ′ (x) = D F ′ (x) = lnx x x x Câu 30 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 31 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Câu 32 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A 15 B 17 C D Câu 33 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D √ Câu 34 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 B < |z| < C ≤ |z| ≤ D |z| > A |z| < 2 2 Câu 35 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = + B w = 1√+ 27i hoặcw =√1 − 27i √ 27 hoặcw = −√ 27 C w = − 27 − i hoặcw = − 27 + i D w = 27 − i hoặcw = 27 + i −2 − 3i Câu 36 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 37 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A B √ C √ D √ 13 z−z =2? Câu 38 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Parabol C Một Elip D Một đường tròn √ Câu 39 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Trang 3/5 Mã đề 001 Câu 40 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 41 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B (x + 1)2 + (y − 2)2 = 125 C x = D (x − 5)2 + (y − 4)2 = 125 Câu 42 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B 4π C π D 2π Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 3a a 15 3a A B C D 10 2 r 3x + Câu 44 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−1; 4) ———————————————– C D = (−∞; 0) D D = (1; +∞) Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 10 31 21 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 46 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 9a3 B 4a3 C 6a3 D 3a3 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 48 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D Câu 49 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Câu 50 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = + 2(ln a)2 C P = ln a D P = 2loga e Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001