LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx − 1nằm bên[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 B m < C m < D Không tồn m A < m < 3 √ sin 2x R bằng? Câu Giá trị lớn hàm √ số y = ( π) A π B π C D √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a a 15 a C D A a 15 B Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32π 32 A V = B V = C V = D V = 3 5 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 300 C 1200 D 450 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo log √b a3 m2 − 12 4m2 − m2 − 12 B C A m 2m 2m √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; 1) B (0; ) C ( ; +∞) 4 Câu Đạo hàm hàm số y = log √2 3x − là: 6 A y′ = B y′ = C y′ = (3x − 1) ln 3x − ln 3x − ln Câu Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại m giá trị P = loga2 b − D m2 − 2m D (1; +∞) D y′ = (3x − 1) ln B Hàm số đạt cực đại D Hàm số đạt cực đại Câu 10 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx 32 C 10 Câu 11 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C −4 A B D 26 D 2i √ Câu 12 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x + 4)2 + (y − 8)2 = √5 C (x − 4)2 + (y + 8)2 = B (x − 4)2 + (y + 8)2 = 20 D (x + 4)2 + (y − 8)2 = 20 Trang 1/5 Mã đề 001 − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 13 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ → √ → − → → − → − − − −a = A c = B b ⊥ c C b ⊥ a D → Câu 14 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 364 B S = 84 C S = 1979 D S = 96 Câu 15 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 16 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng đáy, S A = 2a Gọi φ góc φ =? √ tạo hai mặt phẳng√(S AC), (S BC) Tính cos√ 3 15 B C D A 2 5 Câu 17 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 2) B (0; 1) C (−1; 2) D (1; 0) Câu 18 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B [1; +∞) C (−∞; 1) R Câu 19 Cho x dx = F(x) + C Khẳng định đúng? B F ′ (x) = 1x C F ′ (x) = ln x A F ′ (x) = x22 D (1; +∞) D F ′ (x) = − x12 Câu 20 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ C 22 a3 D 62 a3 A 2a3 B 42 a3 Câu 21 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 15 B C D 17 Câu 22 Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, √ khoảng cách từ tâm của√đường tròn đáy đến mặt24phẳng (S AB) A 24 B C D Câu 23 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (2; 3) C (12; +∞) D (−∞; 3) R4 R4 R4 Câu 24 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B −1 C D Câu 25 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (2; 0) B (0; −2) C (0; 2) D (−2; 0) Câu 26 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 89 B 90 C 49 D 48 Câu 27 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B C D A 2 x−2 y−1 z−1 Câu 28 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Trang 2/5 Mã đề 001 Câu 29 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 30 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ 3 a C a D a A 2a B 3 Câu 31 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ−1 B y′ = xπ−1 C y′ = πxπ D y′ = xπ−1 π 2x + Câu 32 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 2 B y = − C y = D y = A y = − 3 3 Câu 33 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x4 − 3x2 + B y = x2 − 4x + C y = x3 − 3x − D y = x−1 Câu 34 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ D √ B √ C 13 Câu 35 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = C r = 20 D r = 22 √ Câu 36 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A |z| > B |z| < C ≤ |z| ≤ D < |z| < 2 2 Câu 37 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B π C 4π D 2π Câu 38 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Câu 39 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B x = 2 C (x − 1) + (y − 4) = 125 D (x + 1)2 + (y − 2)2 = 125 √ Câu 40 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 41 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = 10 B max T = C max T = D max T = Câu 42 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Trang 3/5 Mã đề 001 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C −2 D √ 2x − x2 + có số đường tiệm cận đứng là: Câu 44 Đồ thị hàm số y = x2 − A B C D Câu 45 Chọn mệnh đề mệnh đề sau: (2x + 1)3 +C A R (2x + 1)2 dx = C R e2x e dx = + C 2x B R x dx =5 x + C D R sin xdx = cos x + C Câu 46 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = 15 C R = D R = 14 Câu 47 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 32 B 128 C 64 x2 )=8 D √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − A y′ = (x2 x − 1)log4 e B y′ = 2(x2 x − 1) ln C y′ = (x2 x − 1) ln D y′ = √ x2 − ln Câu 49 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > 1 B m > m < −1 C m > m < − D m < −2 Câu 50 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π ln + 5 B ln + 6π C cos x π F(− ) = π Khi giá trị sin x + cos x 3π ln + D 6π Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001