LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x = 1 + 2ty = 2 + (m − 1)t[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , −1 B m , C m , D m = Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (−∞; 2] B (1; 2) C (1; 2] √ sin 2x Câu Giá trị lớn hàm R bằng? √ số y = ( π) A B π C D [2; +∞) D π Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều cao tứ diện √ √ 2 √ π 2.a 2π 2.a π 3.a2 A π 3.a B C D 3 Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A m = B < m < C −2 ≤ m ≤ D −2 < m < √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 450 C 1200 D 300 Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B C D π Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A < m < B m < C m < D Không tồn m 3 Câu Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C + log5 a D − log5 a Câu 10 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (0; 1) C (−1; 0) D (1; +∞) Câu 11 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 1 209 A B C D 210 21 210 105 Câu 12 Thể tích khối lập phương có cạnh 3a là: A 2a3 B 8a3 C 27a3 D 3a3 Câu 13 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = − + C B cos 3xdx = sin 3x + C R R sin 3x C cos 3xdx = + C D cos 3xdx = sin 3x + C Câu 14 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; 2) B M(−5; −2) C M(5; −2) D M(−2; 5) Trang 1/5 Mã đề 001 Câu 15 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 1979 B S = 84 C S = 364 D S = 96 Câu 16 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (0; 3] B (−∞; 3] C (−∞; −3] ∪ [3; +∞) D [−3; 3] Câu 17 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (1; 2) C (−1; 2) D (0; 1) R4 R4 R4 Câu 18 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C D −1 Câu 19 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 20 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 45◦ C 60◦ D 30◦ có đồ thị đường cong hình bên Tọa độ giao điểm đồ thị hàm Câu 21 Cho hàm số y = ax+b cx+d số cho trục hoành A (0; −2) B (2; 0) C (−2; 0) D (0; 2) Câu 22 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d = C d > R D d < R Câu 23 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) B C D 113 A 31 Câu 24 Tiệm cận ngang đồ thị hàm số y = A y = 32 B y = − 23 z−1 −3 Gọi (P) mặt 2x+1 3x−1 đường thẳng có phương trình: C y = − 31 D y = 13 Câu R25 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? 2 B R f (x)dx = − sin x + x2 + C A R f (x)dx = sin x + x2 + C C f (x)dx = − sin x + x2 + C D f (x)dx = sin x + x2 + C 2x + đường thẳng có phương trình: Câu 26 Tiệm cận ngang đồ thị hàm số y = 3x − 2 A y = B y = − C y = − D y = 3 3 x+1 Câu 27 Tập nghiệm bất phương trình < A (−∞; 1] B (1; +∞) C [1; +∞) D (−∞; 1) ax + b Câu 28 Cho hàm số y = có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (−2; 0) B (0; 2) C (0; −2) D (2; 0) Câu 29 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Câu 30 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ 3 A a B a C 2a D a 3 Trang 2/5 Mã đề 001 Câu 31 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x=5+t x = + 2t x = + 2t x = + 2t y = + 2t y = + 3t y = −1 + 3t y = −1 + t D A B C z = + 3t z = −1 + t z = −1 + t z = −1 + 3t Câu 32 Phần ảo số phức z = − 3i A −2 B C −3 D Câu 33 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 60◦ C 30◦ D 90◦ Câu 34 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A −1 B C D Câu 35 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 2π B π C 3π D 4π −2 − 3i Câu 36 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 37 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 38 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = 10 D max T = z+i+1 Câu 39 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một Elip B Một đường tròn C Một Parabol D Một đường thẳng Câu 40 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 A S = B S = C S = 2 D S = 1+i z 25 Câu 41 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B π C 4π D 2π Câu 42 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 5π C 25π D Câu 43 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Câu 44 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B −4 ≤ m ≤ −1 C m < D m > −2 Trang 3/5 Mã đề 001 d Câu 45 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ C 2a D a A a B a √ 2x − x2 + Câu 46 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 47 Hàm số hàm số sau đồng biến R A y = 4x + x+2 B y = x4 + 3x2 C y = x3 + 3x2 + 6x − D y = −x3 − x2 − 5x Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t y = −2 + 3t A z = + 5t x = −1 + 2t y = + 3t B z = −4 − 5t x = + 2t y = −2 − 3t C z = − 5t x = + 2t y = −2 + 3t D z = − 5t Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080254 đồng B 36080255 đồng D 36080251 đồng Câu 50 Chọn mệnh đề mệnh đề sau: A R3 |x2 − 2x|dx = − B R3 R3 D R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx R3 (x2 − 2x)dx + 1 C R2 R2 |x − 2x|dx = (x − 2x)dx + 2 R3 (x2 − 2x)dx Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001