1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn khảo sát chất lượng thptqg môn toán (887)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 126,24 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số y = ( √ 3 − 1) x có dạng nào tr[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H4) D (H1) Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến R C Hàm số nghịch biến (0; +∞) D Hàm số đồng biến R Câu Cho hai số thực a, bthỏa√mãn a > b > Kết luận√ sau sai? √ √ √5 √ a b − − 2 A e > e B a b D a < b Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (−2; −1; 2) Câu Hàm số sau đồng biến R? A y = tan x C y = x2 B y = x√4 + 3x2 + √ D y = x2 + x + − x2 − x + Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; 3; 1) D M ′ (−2; −3; −1) Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = +1− ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 1; 0) D (0; 0; 5) Câu Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) Câu 10 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = − A y = ln ln 5 ln ln x x C y = +1− D y = + ln ln 5 ln Câu 11 Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B ln x > ln y C loga x > loga y D log x > log y a a Câu 12 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = C R = 29 D R = 21 Câu 13 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài Trang 1/5 Mã đề 001 A x = + 2ty = + tz = C x = + ty = + 2tz = Câu 14 Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x4 + 3x2 + Câu R15 Kết đúng? A sin2 x cos x = −cos2 x sin x + C R sin3 x + C C sin2 x cos x = − B x = + 2ty = + tz = D x = + 2ty = + tz = − 4t B y = x2 D y = cos x sin2 x cos x = cos2 x sin x + C R sin3 x D sin2 x cos x = + C B R Câu 16 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m < C m > D m ≤ Câu 17 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(2; −6; 4) B M(5; 5; 0) C M(−2; −6; 4) D M(−2; 6; −4) Câu 18 Đường cong hình bên đồ thị hàm số đây? A y = −x3 + 3x2 + B y = x4 − 2x2 + C y = −x4 + 2x2 + D y = x3 − 3x2 + Câu 19 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) −n = (2; −3; 4) A → B → C → D → Câu 20 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx A 32 B 10 C 26 Câu 21 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (0; 3] C (−∞; 3] D D (−∞; −3] ∪ [3; +∞) Câu 22 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = B M(1; −2) C x = −2 D M(−2; −4) Câu 23 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 ≤ m < −3 B m > −4 C −4 < m < −3 D −4 < m ≤ −3 Câu 24 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc φ =? √ tạo hai mặt phẳng (S AC), (S BC) Tính cos√ 15 3 A B C D 2 1 Câu 25 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m > m < C m < D m > Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D Câu 27 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 46.538667 đồng B 48.621.980 đồng C 45.188.656 đồng D 43.091.358 đồng Trang 2/5 Mã đề 001 Câu 28 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga (xy) = loga x.loga y B loga = a loga a = n C loga x = log x , (x > 0, n , 0) D loga x có nghĩa với ∀x ∈ R an x −2x +3x+1 Câu 29 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) B Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) Câu 30 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 20 5πa3 5 A V = a B V = C V = πa D V = πa 6 Câu 31 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 − 4x B 2x3 − 4x4 C x3 − x4 + 2x D x3 + − 4x + A x3 + 4 √ Câu 32 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 a3 2a3 A B C D a3 3 Câu 33 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 4a3 B 3a3 C 9a3 D 6a3 Câu 34 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + B log2 2250 = A log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Câu 35 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 C R3 |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = − D R3 (x2 − 2x)dx R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − R3 |x2 − 2x|dx Câu 36 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln C y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 37 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 3 Trang 3/5 Mã đề 001 x2 Câu 38 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 1 1 B C D A 32 64 128 Câu 39 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương →         x = −1 + 2t      x = + 2t  x = − 2t  x = + 2t      y = −2 + 3t y = −2 + 3t y = −2 − 3t y = + 3t A  B C D             z = − 5t  z = + 5t  z = − 5t  z = −4 − 5t Câu 40 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B −4 C −2 D Câu 41 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 15 πa2 17 A B C D 4 Câu 42 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D y x−1 x−2 = = điểm −1 ′ A(2 ; ; 3) Toạ độ điểm A đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) 3 3 3 3 Câu 43 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 44 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 22π 7π 512π A V = B V = C V = D V = 15 Câu 45 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 − sin x + C B x5 − sin x + C C x5 + sin x + C D 5x5 + sin x + C z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 46 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường tròn (C) √ √ A r = B r = C r = D r = Câu 47 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 3; −2) −n = (1; −2; −1) −n = (1; 2; 3) −n = (1; −2; 3) A → B → C → D → Câu 48 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −1 B C D −7 − → Câu 49 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − A 45◦ B 60◦ C 90◦ D 30◦ Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 09:41