Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hình vẽ bên Kết luận nào sau[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ad > B bc > C ac < D ab < x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = − B y = −1 C y = D y = R R R R 2 Câu Một mặt cầu có diện tích 4πR thể tích khối cầu C πR3 D 4πR3 A πR3 B πR3 Câu Cho hình S ABCcó cạnh đáy a cạnh bên √ b Thể tích khối chóp là: √ chóp 2 3ab a 3b2 − a2 A VS ABC = B VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3a b D VS ABC = C VS ABC = 12 12 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (2; −3; −1) C M ′ (−2; −3; −1) D M ′ (−2; 3; 1) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (−2; −1; 2) Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B −1 < m < C m ∈ (−1; 2) D m ≥ Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = − ln ln 5 ln ln x x C y = +1− D y = + ln ln 5 ln − Câu Đạo hàm hàm số y = (2x + 1) tập xác định 1 − − A (2x + 1) ln(2x + 1) B 2(2x + 1) ln(2x + 1) 4 − − C − (2x + 1) D − (2x + 1) 3 √ Câu 10 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 5; 3, 7)· B (3, 7; 3, 9)· C (3, 3; 3, 5)· D (3, 1; 3, 3)· Câu 11 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 12 C 21 D 27 Trang 1/4 Mã đề 001 Câu 12 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −3 C −2 D 6 R R R Câu 13 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A −6 1 B C −2 D Câu 14 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + 2ty = 2tz = + t B x = + ty = tz = − t C x = + ty = tz = + t D x = − ty = tz = + t − → Câu 15 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 30 B 90 C 60◦ D 45◦ Câu 16 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −2 C −8 D −4 4(−3 + i) (3 − i) + Mô-đun số phức w = z − iz + Câu 17 Cho số phức z thỏa mãn z = −i √ √ √ − 2i √ A |w| = 85 B |w| = C |w| = D |w| = 48 Câu 18 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C (1 + i)(2 − i) Câu 19 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D D |z| = Câu 20 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = D P = 2i Câu 21 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi mô-đun số phức√w = 6z − 25i B C 13 D 29 A Câu 22 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 10i C −3 − 2i D −3 + 2i Câu 23 Tìm số phức liên hợp số phức z = i(3i + 1) B z = − i C z = −3 − i A z = + i D z = −3 + i Câu 24 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực C Mô-đun số phức z số thực không âm B Mô-đun số phức z số phức D Mô-đun số phức z số thực dương Câu 25 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = −21009 i C (1 + i)2018 = 21009 i D (1 + i)2018 = 21009 Câu 26 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = C y′ = D y′ = − xln3 x x xln3 Câu 27 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 B −2 C D −3 A Trang 2/4 Mã đề 001 x−1 y−2 z+3 Câu 28 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A P(1; 2; 3) B N(2; 1; 2) C M(2; −1; −2) D Q(1; 2; −3) Câu 29 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết a, thể tích khối lăng trụ cho khoảng cách từ A đến mặt phẳng (A′ BC) √ √ √ √ 3 3 A a B a C 2a D a Câu 30 Cho số phức z = + 9i, phần thực số phức z2 A 85 B −77 C D 36 Câu 31 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d = R C d < R D d > R Câu 32 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (0; −2) B (−2; 0) C (2; 0) D (0; 2) Câu 33 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (1; 2; −3) C (−1; 2; 3) D (−1; −2; −3) Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ D C √ A B 2 Câu 35 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 − ab − bc − ca C a2 + b2 + c2 + ab + bc + ca D Câu 37 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − Câu 39 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B 21008 C −21008 D −22016 z Câu 40 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D Trang 3/4 Mã đề 001 √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 41 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 42 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 97 85 D T = B T = 13 C T = A T = 13 3 Câu 43 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C 2i D −4 Câu 44 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = B S = −6 C S = −5 D S = π R4 Câu 45 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − π2 + 16π − 16 π2 + 15π π2 − A B C D 16 16 16 16 Câu 46 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 128 B 64 C D 512 Câu 47 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = B M(−2; −4) C M(1; −2) D x = −2 Câu 48 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; 3] B [−3; 3] C (−∞; −3] ∪ [3; +∞) D (0; 3] R Câu 49 6x5 dxbằng D 30x4 + C A 6x6 + C B x6 + C C x6 + C R3 Câu 50 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx A 10 26 B 32 C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001