Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho −→u (2;−2; 1), kết luận nào sau[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 → − Câu Trong không gian với hệ tọa độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B log x > log y C loga x > loga y D log x > log y a a Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x + 3x có cực tiểu mà khơng có cực đại A m > B m < C m ≥ D m ≤ 1 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến R C Hàm số nghịch biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −15 C m = 13 D m = −2 Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 512π 22π 7π B V = C V = D V = A V = 15 Câu 10 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 − Câu 11 Đạo hàm hàm số y = (2x + 1) tập xác định − − A − (2x + 1) B (2x + 1) ln(2x + 1) − − C − (2x + 1) D 2(2x + 1) ln(2x + 1) R6 R6 R6 Câu 12 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A −2 B C D −6 Trang 1/5 Mã đề 001 1 Câu 13 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A 16 B C Có giá trị nguyên D Câu 14 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D y−6 z+2 x−2 = = Câu 15 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ C √ A √ B √ D 10 10 53 Câu 16 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −4 B −2 C −6 D −8 Câu 17 Với số phức z, ta có |z + 1|2 A z2 + 2z + B |z|2 + 2|z| + Câu 18 Cho số phức z thỏa mãn (2 + i)z + A 13 B C z · z + z + z + D z + z + 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + 1+i C D Câu 19 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số phức B Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực √ Câu 20 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B −1 ≤ m ≤ C ≤ m ≤ D m ≥ m ≤ Câu 21 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C 21008 D Câu 22 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 + 2i C −3 − 10i D −3 − 2i Câu 23 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −7 − 7i B w = −3 − 3i C w = − 3i D w = + 7i Câu 24 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 25 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = C A = 2ki D A = 2k Câu 26 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = Trang 2/5 Mã đề 001 Câu 27 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = 10 B I = C I = D I = Câu 28 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x − 1) x + C B x2 x + C C x2 + x+1 x+1 + C D (x + 1) x + C R0 Câu 29 Giá trị −1 e x+1 dx A e − B e C − e D −e R8 R4 R4 Câu 30 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R8 A [4 f (x) − 2g(x)] = −2 B f (x) = −5 R4 R8 C [ f (x) + g(x)] = 10 D f (x) = Câu 31 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z − 15 = B x + 2y + 2z − 15 = C x − 2y + 2z + 15 = D x + 2y + 2z + 15 = R Câu 32 Tìm nguyên hàm I = xcosxdx x A I = xsinx + cosx + C B I = x2 sin + C x C I = x cos + C D I = xsinx − cosx + C Câu 33 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx − cosx + C B F(x) = −sinx + cosx + C C F(x) = sinx − cosx + C D F(x) = sinx + cosx + C Câu 34 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = −2016 C P = 2016 D P = Câu 35 Cho số phức z , thỏa mãn A |z| = B |z| = z+1 số ảo Tìm |z| ? z−1 C |z| = Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D |z| = D Câu 37 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = 2016 C P = −2016 D P = √ Câu 38 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B C a + b + c D a2 + b2 + c2 + ab + bc + ca Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 4)2 D P = (|z| − 2)2 Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Trang 3/5 Mã đề 001 √ Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bao nhiêu? √ √ √ 10 A Pmax = B Pmax = C Pmax = Giá trị lớn biểu thức D Pmax √ = Câu 42 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = −1 D A = 3x Câu 43 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C Không tồn m D m = Câu 44 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 2 Câu 45 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B C ln D − ln Câu 46 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRl + 2πR2 C S = πRh + πR2 D S = πRl + πR2 Câu 47 Chọn mệnh đề mệnh đề sau: R R e2x +C B sin xdx = cos x + C A e2x dx = R R (2x + 1)3 C x dx =5 x + C D (2x + 1)2 dx = + C A D = (−1; 4) 3x + x−1 B D = (1; +∞) C D = (−∞; −1] ∪ (1; +∞) D D = (−∞; 0) r Câu 48 Tìm tập xác định D hàm số y = log2 Câu 49 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n √ Câu 50 Tính đạo hàm hàm số y = log4 x2 − x x A y′ = B y′ = C y′ = √ (x − 1) ln (x − 1)log4 e x2 − ln D y′ = 2(x2 x − 1) ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001