1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (842)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,32 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được A[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường parabol C Đường hypebol D Đường elip Câu Kết đúng? R R sin3 x 2 + C A sin x cos x = cos x sin x + C B sin x cos x = − 3 R R sin x C sin2 x cos x = + C D sin2 x cos x = −cos2 x sin x + C Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; −5; 0) C (0; 5; 0) D (0; 0; 5) Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > 2e C m ≥ e−2 D m > Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x − B y = −1+ A y = ln ln 5 ln ln x x C y = + D y = +1− ln 5 ln ln Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B loga x > loga y C log x > log y D ln x > ln y a Câu Bất đẳng thức sau đúng? −e A 3√ > 2−e √ e π C ( − 1) < ( − 1) a π B 3√ < 2π √ π e D ( + 1) > ( + 1) Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; 2) C S = (−∞; ln3) D S = [ 0; +∞) Câu Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 30 B 50 C 60 Câu 10 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a3 B a3 C 2a3 D 40 D 6a2 Câu 11 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C 3a D 2 Câu 12 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 13 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 55 14 220 Trang 1/5 Mã đề 001 √ Câu 14 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 1; 3, 3)· B (3, 5; 3, 7)· C (3, 3; 3, 5)· D (3, 7; 3, 9)· Câu 15 Đường thẳng y = tiệm cận ngang đồ thị đây? −2x + 1+x 2x − B y = C y = D y = A y = x+2 x−2 x+1 − 2x Câu 16 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 17 B 13 C 20 D 18 Câu 17 Những số sau vừa số thực vừa số ảo? A Khơng có số B C.Truehỉ có số C Câu 18 Tính mơ-đun số phức z thỏa mãn z(2 − i) + 13i =√1 √ 34 C |z| = A |z| = 34 B |z| = 34 Câu 19 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 − 2i C −3 + 2i D Chỉ có số √ D |z| = 34 D 11 + 2i Câu 20 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B C −9 D −10 Câu 21.√Cho số phức z1 = + √ 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ A 10 B 30 C 10 D 130 Câu 22 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B |z2 | = |z|2 C z + z = 2bi D z · z = a2 − b2 Câu 23 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z2 + 2z + C z + z + D |z|2 + 2|z| + Câu 24 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 25 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −3 D −7 Câu 26 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; −1; −4) B (−3; −1; −4) C (−3; −1; 4) D (3; 1; 4) −−→ Câu 27 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 1; 1) B (1; 1; 3) C (3; 3; −1) D (−1; −1; −3) R3 Câu 28 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 C ( ; 1) D (−1; 0) A (1; 2) B (0; ) 2 Câu 29 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − = B 3x − 2y + z + = C 3x − 2y + z − 12 = D 3x + 2y + z − = Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(−1; −4; 4) C C(1; 0; 2) D C(1; 4; 4) Trang 2/5 Mã đề 001 Câu 31 Tích phân I = A R2 (2x − 1) có giá trị bằng: B C D Câu 32 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = C I = D I = 10 Câu 33 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? b A a k · f (x) = k[F(b) − F(a)] B Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) b Rb C a f (2x + 3) = F(2x + 3) a Ra D b f (x) = F(b) − F(a) √ Giá trị lớn biểu thức Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ A P = + B P = 26 C P = 34 + D P = + z + z2 Câu 36 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 5 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 √ Câu 37 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| > C |z| < D ≤ |z| ≤ 2 2 Câu 38 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ A B 10 C 15 D Câu 39 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 √  √  √ 42 √ Câu 40 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 z Câu 41 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ A B C D Câu 42 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | Trang 3/5 Mã đề 001 √ A P = √ B P = C P = √ D P = √ Câu 43 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + 2πR2 Câu 44 Tìm tất giá trị tham số m để hàm số y = A m = −1 B Khơng có m D S = πRl + πR2 x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = Câu 45 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A 12 B C D Câu 46 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2abc C P = 26abc D P = 2a+b+c Câu 47 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 15 B R = C R = 14 D R = Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C Câu 49 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π ln + 5 B ln + 6π C D π cos x F(− ) = π Khi giá trị sin x + cos x 6π D 3π ln + Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 A M( ; ; ) 3 10 31 B M( ; ; ) 3 21 C M( ; ; ) 3 11 17 D M( ; ; ) 3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 07:54