Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu 1.√Hình nón có bán kính đáy R, đường sinh l diện√tích xung quanh A π l2 − R2 B 2πRl C 2π l2 − R2 D πRl Câu R2 Công thức sai? A R cos x = sin x + C C sin x = − cos x + C R B R e x = e x + C D a x = a x ln a + C Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 300 C 600 D 450 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π B √ C D 3π 3 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 √ Câu Cho lăng trụ ABC.A√′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: A a3 B 3a3 C 3a3 D 3a3 + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A ∀m ∈ R B −4 < m < C < m , D m < Câu Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A A310 B C10 C 103 D 310 Câu 10 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 55 220 Câu 11 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C 3a D Câu 12 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = − t B x = + ty = tz = + t C x = + 2ty = 2tz = + t D x = − ty = tz = + t Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−1; −4) B (0; −3) C (1; −4) D (−3; 0) Câu 14 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B C −1 D Câu 15 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −4 B −8 C −2 D −6 R Câu 16 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x C f (x) = cos 3x D f (x) = − A f (x) = −3 cos 3x B f (x) = 3 Câu 17 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z + z + C |z|2 + 2|z| + D z2 + 2z + (1 + i)(2 − i) Câu 18 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = − 2i (1 − i)(2 + i) + Câu 19 Phần thực số phức z = 2−i + 3i 11 11 29 29 A B − C D − 13 13 13 13 Câu 20 Tìm số phức liên hợp số phức z = i(3i + 1) A z = − i B z = −3 + i C z = + i D z = −3 − i Câu 21 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B 11 + 2i C −3 + 2i D −3 − 2i Câu 22 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = −21009 i C (1 + i)2018 = 21009 i D (1 + i)2018 = −21009 (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 23 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A |z| = B z số ảo C z = z D z = z Câu 24 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực B Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực dương D Mô-đun số phức z số phức 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 25 Cho số phức z thỏa mãn (2 + i)z + 1+i A B 13 C D Câu 26 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x + 1) x + C B x2 + x+1 x+1 + C C (x − 1) x + C D x2 x + C −−→ Câu 27 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 3; −1) B (3; 1; 1) C (−1; −1; −3) D (1; 1; 3) Câu 28 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A P(3; 1; 3) B M(−2; 1; −8) C Q(1; 2; −5) D N(4; 2; 1) Câu 29 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z − = C −2x + y − z + = D 2x + y − z − = Trang 2/5 Mã đề 001 Câu 30 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? Rb A a k · f (x) = k[F(b) − F(a)] b Rb B a f (2x + 3) = F(2x + 3) a Ra C b f (x) = F(b) − F(a) D Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Câu 31 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 0; 2) B C(−1; 0; −2) C C(−1; −4; 4) D C(1; 4; 4) R8 R4 R4 Câu 32 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R4 A f (x) = −5 B [ f (x) + g(x)] = 10 R8 R4 C f (x) = D [4 f (x) − 2g(x)] = −2 Câu 33 Biết R1 tính ab A ab = −5 x2 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b B ab = C ab = 12 D ab = Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A √ B C D 2 Câu 35 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 21008 C −22016 D 22016 √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ bao nhiêu? √ √ √ + z3 | + 3|z3 + z1 | 10 B Pmax = C Pmax = D Pmax = A Pmax = √ Câu 37 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 − ab − bc − ca C a + b + c D a2 + b2 + c2 + ab + bc + ca z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C 2 D Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = D P = 34 + A P = 26 Câu 40 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = −1 D A = Trang 3/5 Mã đề 001 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 9 A ; +∞ B ; C 0; D ; 4 4 Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 11 17 21 10 31 B M( ; ; ) C M( ; ; ) D M( ; ; ) A M( ; ; ) 3 3 3 3 3 Câu 44 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 27 25 29 B C D A 4 4 Câu 46 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 48 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 2 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = + 2t x = − 2t x = −1 + 2t y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t A B C D z = − 5t z = − 5t z = + 5t z = −4 − 5t Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001