Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Số nghiệm của phương trình 9x + 5 3x − 6 = 0 là A 0 B 4 C 1 D 2 Câu 2 Vớ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = −15 D m = 13 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π B 3π A √ C 3π D 3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (−2; 0; 0) C (0; 6; 0) D (0; 2; 0) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếux = y = −3 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (−2; −1; 2) C (2; −1; 2) D (2; −1; −2) Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C 4πR3 D πR3 Câu Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, diện √ tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 21 C 18 D 27 Câu 10 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B 3a C D Câu 11 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 50 B 40 C 30 D 60 Câu 12 Đường thẳng y = tiệm cận ngang đồ thị đây? 1+x −2x + 2x − A y = B y = C y = − 2x x−2 x+2 D y = x+1 Trang 1/5 Mã đề 001 Câu 13 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −8 C −4 D −2 Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) không cắt mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) cắt mặt cầu (S ) Câu 15 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (3; +∞) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho đồng biến khoảng (−∞; 3) Câu 16 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a2 B 2a3 C a3 D 6a3 + 2i + i2017 có tổng phần thực phần ảo Câu 17 Số phức z = 2−i A B C -1 D 25 1 Câu 18 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B 31 C 17 D −17 Câu 19 Những số sau vừa số thực vừa số ảo? A B C.Truehỉ có số C Khơng có số Câu 20 Cho P = + i + i + i + · · · + i A P = B P = + i D Chỉ có số 2017 Đâu phương án xác? C P = 2i D P = 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 21 Cho số phức z thỏa mãn (2 + i)z + 1+i A B 13 C D Câu 22 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 1008 A −21008 B 21008 C −22016 + D −2 z2 Câu 23 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B C 11 D 13 √ Câu 24 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B −1 ≤ m ≤ C ≤ m ≤ D m ≥ m ≤ −1 Câu 25 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B N(2; 3) C Q(−2; −3) D P(−2; 3) Câu 26 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z + = C 2x + y − z − = D −2x + y − z − = Câu 27 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A −2 B C D Câu 28 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = 2023cos(2023x) B f (x) = cos(2023x) C f (x) = − cos(2023x) D f (x) = −2023cos(2023x) 2023 R3 Câu 29 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A ( ; 1) B (1; 2) C (−1; 0) D (0; ) 2 Trang 2/5 Mã đề 001 Câu 30 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x+1 B F(x) = e2x C F(x) = e x R2 Câu 31 Tính tích phân I = xe x dx A I = e2 B I = −e2 C I = e R2 Câu 32 Tích phân I = (2x − 1) có giá trị bằng: A B C D F(x) = e x + D I = 3e2 − 2e D Câu R33 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = R f (x) − R g(x), với hàm số f (x); g(x) liên tục R B R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R C R f ′ (x) = f (x) R + C với hàm số f (x) có đạo hàm liên tục R D k f (x) = k f (x) với số k với hàm số f (x) liên tục R √ 2 Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √2 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 35 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B z số thực không dương C Phần thực z số âm D |z| = Câu 36 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = D P = C P = A P = 2 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 9 A ; +∞ B ; C 0; D ; 4 4 Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? B C D A 2 Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q Câu 40 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| √ A B √ C 2 D điểm P z số thực Giá trị lớn + z2 D Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B 10 C D Câu 42 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 Trang 3/5 Mã đề 001 Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 27 B 23 C 25 D 29 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 45 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 46 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 15 πa2 17 πa2 17 πa2 17 A B C D Câu 47 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 2 Câu 48 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRh + πR2 C S = πRl + 2πR2 D S = πRl + πR2 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 32π B 31π C 33π D 6π Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001