Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết F(x) là một nguyên hàm của hàm số f (x) = x cos2x và F( π 3 ) = π √[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 π π x π F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos2 x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = − D F( ) = + 4 4 4 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B m ≥ C m ∈ (−1; 2) D −1 < m < Câu Cho hình√chóp S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: a2 3b2 − a2 3ab2 A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường elip C Đường hypebol D Đường trịn x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = B y = − C y = D y = −1 R R R R 2 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; 6; 0) C (0; −2; 0) D (0; 2; 0) Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = −2 C m = 13 D m = Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 1; 0) C (0; 0; 5) D (0; −5; 0) x−2 y−6 z+2 = = d2 : Câu Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng cách −2 từ điểm M(1; 1; 1) đến (P) √ A √ C √ B √ D 10 10 53 Câu 10 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vng cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 2 R Câu 11 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = B f (x) = − C f (x) = cos 3x D f (x) = −3 cos 3x 3 Trang 1/5 Mã đề 001 Câu 12 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 48 B 76 C 64 D 56 Câu 13 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (3; +∞) B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho đồng biến khoảng (−∞; 3) Câu 14 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a C 2a D A a B 2 Câu 15 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2022 B 2019 C 2021 D 2020 R2 R2 Câu 16 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A −9 B C D −1 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 17 Cho số phức z thỏa mãn (2 + i)z + 1+i A 13 B C D Câu 18 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực là−3 phần ảo −2i C Phần thực phần ảo 2i D Phần thực là3 phần ảo Câu 19 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D 4(−3 + i) (3 − i)2 Câu 20 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = B |w| = 48 C |w| = D |w| = 85 Câu 21.√Cho số phức z1 = + √ 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ A 10 B 10 C 30 D 130 − 2i (1 − i)(2 + i) + Câu 22 Phần thực số phức z = 2−i + 3i 29 29 11 11 A − B C − D 13 13 13 13 Câu 23 Cho số phức z = + 5i Tìm số phức w = iz + z A w = + 7i B w = −7 − 7i C w = − 3i D w = −3 − 3i 25 1 Câu 24 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −17 B −31 C 31 D 17 Câu 25 Những số sau vừa số thực vừa số ảo? A Khơng có số B Chỉ có số C C.Truehỉ có số D Trang 2/5 Mã đề 001 Câu 26 Nguyên hàm A ln2 x + lnx + C R + lnx dx(x > 0) x B x + ln2 x + C C x + ln2 x + C D ln2 x + lnx + C Câu R27 Mệnh đề R sau sai? A R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R B R ( f (x) − g(x)) = R f (x) − R g(x), với hàm số f (x); g(x) liên tục R C R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Câu 28 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A M(−2; 1; −8) B N(4; 2; 1) C P(3; 1; 3) D Q(1; 2; −5) Câu 29 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = 10 D I = R2 Câu 30 Tích phân I = (2x − 1) có giá trị bằng: A B C D R8 R4 R4 Câu 31 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R4 A [ f (x) + g(x)] = 10 B [4 f (x) − 2g(x)] = −2 R8 R8 C f (x) = D f (x) = −5 Câu 32 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x + 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = 2 C (x − 2) + y + z = D (x + 2)2 + y2 + z2 = Câu 33 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = sinx − cosx + C B F(x) = −sinx + cosx + C C F(x) = sinx + cosx + C D F(x) = −sinx − cosx + C Câu 34 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D z số thực Tính giá trị biểu Câu 35 Cho số phức z , cho z số thực w = + z2 |z| bằng? thức + |z|2 √ 1 A B C D Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm S C điểm R D điểm Q = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 1 A ; B ; +∞ C 0; D ; 4 4 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − Câu 38 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B 22016 C −21008 D −22016 Trang 3/5 Mã đề 001 Câu 39 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? B C A 2 D 1 = Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C D √ 2 Câu 41 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? B < |z| < A < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 √ Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 43 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx + (x2 − 2x)dx B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + R2 R3 1 R3 R2 R3 (x2 − 2x)dx |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = |x2 − 2x|dx − R3 (x2 − 2x)dx |x2 − 2x|dx Câu 44 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = D m = m = −10 Câu 45 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x3 + 3x2 + 6x − 4x + D y = x4 + 3x2 C y = x+2 r 3x + Câu 46 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) B D = (−∞; −1] ∪ (1; +∞) C D = (−∞; 0) D D = (1; +∞) Câu 47 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + πR2 C S = πRl + 2πR2 D S = 2πRl + 2πR2 Câu 48 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 3 Trang 4/5 Mã đề 001 Câu 49 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B − ln C D ln Câu 50 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B −3 ≤ m ≤ C m > −2 D m < - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001