Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính I = 1∫ 0 3√7x + 1dx A I = 60 28 B I = 21 8 C I = 45 28 D I = 20 7 C[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính I = R1 √3 7x + 1dx 60 21 B I = 28 Câu 2.√ Bất đẳng thức √ esau đúng? π A ( + 1) > ( + 1) C 3−e > 2−e A I = C I = 45 28 D I = 20 √ √ e π B ( − 1) < ( − 1) D 3π < 2π Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu D πR3 A πR3 B 4πR3 C πR3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ D R = 21 A R = B R = C R = 29 √ ′ ′ ′ ′ Câu 6.√Cho lăng trụ ABC.A B C có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ A 3a3 B 3a3 C 3a3 D a3 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = x3 − 2x2 + 3x + 3x + C y = D y = tan x x−1 Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Đường thẳng y = tiệm cận ngang đồ thị đây? 2x − −2x + 1+x A y = B y = C y = D y = x+1 x+2 x−2 − 2x Câu 10 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 18 C 21 D 12 R6 R6 R6 Câu 11 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A B C −6 D −2 √ a Câu 12 Cho hình chóp S ABCD có cạnh đáy a đường cao S H Tính góc mặt bên (S DC) mặt đáy A 45o B 60o C 90o D 30o √ Câu 13 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) D A 3a B C Trang 1/5 Mã đề 001 Câu 14 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B C −2 D Câu 15 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A 103 C 310 D C10 B A310 Câu 16 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 17 C 20 D 13 Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D − 2i (1 − i)(2 + i) Câu 18 Phần thực số phức z = + 2−i + 3i 29 11 11 29 A − B C D − 13 13 13 13 √ Câu 19 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A −1 ≤ m ≤ B ≤ m ≤ C m ≥ m ≤ D m ≥ m ≤ −1 1 25 = + Khi phần ảo z bao nhiêu? Câu 20 Cho số phức z thỏa z + i (2 − i)2 A 31 B −17 C 17 D −31 Câu 21 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = + 7i C w = −3 − 3i D w = −7 − 7i 4(−3 + i) (3 − i) + Mô-đun số phức w = z − iz + Câu 22 Cho số phức z thỏa mãn z = −i √ √ − 2i √ √ A |w| = B |w| = 85 C |w| = 48 D |w| = Câu 23 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực C Mô-đun số phức z số thực không âm B Mô-đun số phức z số thực dương D Mô-đun số phức z số phức Câu 24 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i = √ √ 34 34 A |z| = 34 B |z| = C |z| = 34 D |z| = 3 Câu 25 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 −−→ Câu 26 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (3; 1; 1) B (−1; −1; −3) C (3; 3; −1) D (1; 1; 3) Câu 27 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = 10 C I = D I = R3 Câu 28 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A ( ; 1) B (1; 2) C (−1; 0) D (0; ) 2 Câu R29 Mệnh đề R sau sai? A R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R B R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R C R f ′ (x) = f (x) + CR với mọiR hàm số f (x) có đạo hàm liên tục R D ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R Trang 2/5 Mã đề 001 Câu 30 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x + B F(x) = e x+1 C F(x) = e x D F(x) = e2x Câu 31 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A 2x + y − z − = B −2x + y − z − = C −2x + y − z + = D −2x + y − z + = R1 Câu 32 Tích phân e−x dx e−1 1 B C D e − A − e e e Câu 33 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F(x) = f ′ (x) + C C F ′ (x) + C = f (x) D F(x) = f ′ (x) √ 2 Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 3√ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 35 Cho số phức z (không phải số thực, số ảo) thỏa mãn + z + z2 số thực − z + z2 Khi mệnh đề sau đúng? A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 z+1 Câu 36 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 D |z| = A |z| = B |z| = C |z| = Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = 34 + C P = D P = + A P = 26 Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 39 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = C P = −2016 D P = 2016 √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 B ≤ |z| ≤ C |z| > D < |z| < A |z| < 2 2 Câu 41 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D √ √ √ 42 √ Câu 42 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 43 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 8π C 12π D 10π Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y x y C Nếu a < a > a ⇔ x < y D Nếu a > a x > ay ⇔ x > y Trang 3/5 Mã đề 001 Câu 45 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ A 3a3 √ B 9a3 √ C 4a3 √ D 6a3 Câu 46 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 29 B 27 C 25 D 23 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C √ Câu 48 Cho bất phương trình 2(x−1)+1 D −2 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình vơ nghiệm C Bất phương trình với x ∈ (4; +∞) D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 49 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 6π B 32π C 33π D 31π Câu 50 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ A B C √ D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001