TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→+∞ x + 1 4x + 3 bằng A 1 3 B 1 4 C 3 D 1 Câu 2[.]
TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x+1 Câu Tính lim x→+∞ 4x + 1 A B C D Câu [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD a b2 + c2 c a2 + b2 abc b2 + c2 b a2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = z1 thỏa mãn |z1 − − i| = Diện tích hình phẳng giới hạn hai quỹ tích biểu diễn hai số phức z z1 gần giá trị nhất? A 0, B 0, C 0, D 0, Câu Dãy số sau có giới hạn 0? n2 + n + n2 − 3n n2 − A un = B u = C u = n n (n + 1)2 n2 5n − 3n2 Câu Cho khối chóp có đáy n−giác Mệnh đề sau đúng? A Số cạnh khối chóp số mặt khối chóp B Số đỉnh khối chóp số mặt khối chóp C Số đỉnh khối chóp số cạnh khối chóp D Số cạnh, số đỉnh, số mặt khối chóp D un = − 2n 5n + n2 Câu mệnh đề sau, mệnh Z Cho hàm số f (x), g(x) Z liên tục Z R Trong Z Z đề sai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx f (x)dx − k f (x)dx = f B Z Z g(x)dx D f (x)g(x)dx = Z f (x)dx, k ∈ R, k , Z f (x)dx g(x)dx Câu [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 20 B 24 C 3, 55 D 15, 36 Câu [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép ổn định tháng lĩnh 61.758.000 Hỏi lãi suất ngân hàng tháng bao nhiêu? Biết lãi suất không thay đổi thời gian gửi A 0, 8% B 0, 5% C 0, 7% D 0, 6% Câu [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 Câu 10 Khối đa diện thuộc loại {3; 4} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu 11 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) D lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b Trang 1/10 Mã đề Câu 12 [2] Đạo hàm hàm số y = x ln x A y0 = ln x − B y0 = − ln x C y0 = + ln x D y0 = x + ln x Câu 13 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a B C 2a D a A Câu 14 Z Các khẳng định sau Z sai? f (x)dx = F(x) +C ⇒ !0 Z C f (x)dx = f (x) A f (u)dx = F(u) +C B Z k f (x)dx = k Z f (x)dx, k số Z Z D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 15 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm √ Câu 16 [1] Cho a > 0, a , Giá trị biểu thức loga a B C −3 A − D Câu 17 Cho hàm số y = x3 − 2x2 + x + ! Mệnh đề đúng? ! 1 A Hàm số đồng biến khoảng ; B Hàm số nghịch biến khoảng ; 3 ! C Hàm số nghịch biến khoảng −∞; D Hàm số nghịch biến khoảng (1; +∞) Câu 18 Cho √ số phức z thỏa mãn |z + 3| = |z − 2i| = |z − 2√− 2i| Tính |z| B |z| = 17 C |z| = 17 D |z| = 10 A |z| = 10 Câu 19 [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + Tìm giá trị tham số m để hàm số nghịch biến R A −2 < m < −1 B (−∞; −2) ∪ (−1; +∞) C −2 ≤ m ≤ −1 D (−∞; −2] ∪ [−1; +∞) Câu 20 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x2 y = x 11 A B C D 2 Câu 21 [2]√Tìm m để giá trị lớn hàm số y = 2x3 + (m2 + 1)2 x [0; 1] √ A m = ± B m = ±3 C m = ±1 D m = ± Câu 22 Cho hình chóp S ABC Gọi M trung điểm S A Mặt phẳng BMC chia hình chóp S ABC thành A Hai hình chóp tứ giác B Hai hình chóp tam giác C Một hình chóp tứ giác hình chóp ngũ giác D Một hình chóp tam giác hình chóp tứ giác Câu 23 [2] Tổng nghiệm phương trình log4 (3.2 x − 1) = x − A B C D Trang 2/10 Mã đề Câu 24 Cho hình chóp S ABC có đáy ABC tam giác vuông cân A với AB = AC = a, biết tam giác S AB cân S nằm mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) góc 45◦ Thể tích khối chóp S ABC a3 a3 a3 B C D a3 A 24 12 Câu 25 [2] Một người gửi 9, triệu đồng với lãi suất 8, 4% năm lãi suất hàng năm nhập vào vốn Hỏi theo cách sau năm người thu tổng số tiền 20 triệu đồng (Biết lãi suất không thay đổi) A năm B năm C 10 năm D năm Câu 26 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ 0 ABC.A0 B C √ √ 3 a a a3 3 B a3 C D A Câu 27 Cho khối chóp có đáy n−giác Mệnh đề sau đúng? A Số mặt khối chóp 2n+1 B Số mặt khối chóp số cạnh khối chóp C Số cạnh khối chóp 2n D Số đỉnh khối chóp 2n + Câu 28 Hàm số y = 2x3 + 3x2 + nghịch biến khoảng (hoặc khoảng) đây? A (−∞; 0) (1; +∞) B (−1; 0) C (−∞; −1) (0; +∞) D (0; 1) !x 1−x Câu 29 [2] Tổng nghiệm phương trình = + A − log2 B − log3 C − log2 D log2 Câu 30 Tính lim x→+∞ A x−2 x+3 B − C D −3 Câu 31 Cho số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = Tìm giá trị nhỏ P = xy + x + 2y + 17 A −12 B −5 C −9 D −15 Câu 32 Hàm số y = x + có giá trị cực đại x A −2 B −1 C D Câu 33 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 34 Cho hình chóp S ABCD có √ đáy ABCD hình chữ nhật AD = 2a, AB = a Gọi H trung điểm AD, biết S H ⊥ (ABCD), S A =√a Thể tích khối chóp S ABCD √ 2a3 2a3 4a3 4a3 A B C D 3 3 Trang 3/10 Mã đề 1 − 2n bằng? 3n + 2 A B C − D 3 Câu 36 Cho hình chóp S ABC có đáy ABC tam giác cạnh a, biết S A ⊥ (ABC) (S BC) hợp với đáy (ABC) góc 60◦ Thể√tích khối chóp S ABC √ √ a3 a3 a3 a3 A B C D 12 Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a C D A a B 2 x = + 3t Câu 38 [1232h] Trong không gian Oxyz, cho đường thẳng d : y = + 4t Gọi ∆ đường thẳng qua z = điểm A(1; 1; 1) có véctơ phương ~u = (1; −2; 2) Đường phân giác góc nhọn tạo d ∆ có phương trình x = −1 + 2t x = + 3t x = −1 + 2t x = + 7t A C y = −10 + 11t B y = + 4t y = −10 + 11t D y=1+t z = −6 − 5t z = − 5t z = − 5t z = + 5t Câu 35 [1] Tính lim Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = ey + C xy0 = −ey − D xy0 = −ey + Câu 39 [3-12217d] Cho hàm số y = ln A xy0 = ey − Câu 40 [3-1122h] Cho hình lăng trụ ABC.A0 B0C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a BC Khi thể tích khối lăng trụ √ √ √ √ a3 a3 a3 a3 A B C D 36 12 24 Câu 41 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A B C 22016 D e2016 Câu 42 Khối đa diện loại {5; 3} có số đỉnh A 30 B 20 C 12 D Z a a x dx = + b ln + c ln d, biết a, b, c, d ∈ Z phân số tối giản Giá Câu 43 Cho I = √ d d 4+2 x+1 trị P = a + b + c + d bằng? A P = B P = 28 C P = 16 D P = −2 Câu 44 [1] Cho a số thực dương tùy ý khác Mệnh đề đúng? 1 A log2 a = loga B log2 a = − loga C log2 a = D log2 a = log2 a loga Câu 45 Cho hàm số y = −x3 + 3x2 − Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; 2) B Hàm số đồng biến khoảng (0; +∞) C Hàm số đồng biến khoảng (0; 2) D Hàm số nghịch biến khoảng (0; 2) d = 120◦ Câu 46 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) Trang 4/10 Mã đề A 3a B 3a C 2a D 4a π Câu 47 [2-c] Giá trị lớn hàm số y = e x cos x đoạn 0; √ √ π4 π6 π3 e e A B e C D 2 Câu 48 Cho hình chóp S ABCD có đáy ABCD hình thang vng A D; AD = CD = a; AB = 2a; tam giác S AB nằm mặt Thể tích khối chóp √ S ABCD √ phẳng vng góc với 3(ABCD) √ 3 √ a a a B C D A a3 Câu 49 Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A −6 B C −3 D √ Câu 50 Cho chóp S ABCD có đáy ABCD hình vng cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích khối chóp S ABCD √ √ √ a3 a3 a3 A B C D a3 12 3 Câu 51 Cho hàm số y = x + 3x Mệnh đề sau đúng? A Hàm số nghịch biến khoảng (−2; 1) B Hàm số đồng biến khoảng (−∞; 0) (2; +∞) C Hàm số đồng biến khoảng (−∞; −2) (0; +∞) D Hàm số nghịch biến khoảng (−∞; −2) (0; +∞) √ x2 + 3x + Câu 52 Tính giới hạn lim x→−∞ 4x − 1 A − B C D 4 Câu 53 Hàm số f có nguyên hàm K A f (x) xác định K B f (x) có giá trị lớn K C f (x) có giá trị nhỏ K D f (x) liên tục K Câu 54 Tính thể tích khối lập phương biết tổng diện tích tất mặt 18 √ A B 3 C 27 D ln x m Câu 55 [3] Biết giá trị lớn hàm số y = đoạn [1; e3 ] M = n , n, m x e số tự nhiên Tính S = m2 + 2n3 A S = 32 B S = 22 C S = 24 D S = 135 3a Câu 56 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 57 Khối đa diện loại {3; 3} có số đỉnh A B C D Câu 58 [2] Tích tất nghiệm phương trình (1 + log2 x) log4 (2x) = 1 A B C D 4 a Câu 59 [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = + , với a, b ∈ Z Giá trị a + b b ln A B C D Trang 5/10 Mã đề Câu 60 Khối đa diện loại {3; 5} có số mặt A B 30 C 20 D 12 x Câu 61 Tính diện tích hình phẳng giới hạn đường √ y = xe , y = 0, x = 3 A B C D 2 Câu 62 Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin x cos x B − sin 2x C −1 + sin 2x D + sin 2x [ = 60◦ , S A ⊥ (ABCD) Câu 63 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết rằng√ khoảng cách từ A đến cạnh √ S C a Thể tích khối √chóp S ABCD 3 √ a a a A B C D a3 12 Câu 64 Phần thực phần ảo số phức z = −i + A Phần thực −1, phần ảo B Phần thực 4, phần ảo −1 C Phần thực −1, phần ảo −4 D Phần thực 4, phần ảo Câu 65 Khối đa diện loại {3; 4} có tên gọi gì? A Khối bát diện B Khối 12 mặt C Khối lập phương D Khối tứ diện Câu 66 [2-c] Giá trị nhỏ hàm số y = x2 ln x đoạn [e−1 ; e] 1 A − B − C −e D − e 2e e Câu 67 Tìm tất khoảng đồng biến hàm số y = x3 − 2x2 + 3x − A (−∞; 1) (3; +∞) B (1; 3) C (−∞; 3) D (1; +∞) Câu 68 Tính lim A +∞ cos n + sin n n2 + B C −∞ D Câu 69 Cho hình chóp S ABC có đáy ABC tam giác vng cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ 3 a a a3 a3 A B C D 24 48 24 Câu 70 [3-12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D Câu 71 Tìm m để hàm số y = x3 − 3mx2 + 3m2 có điểm cực trị A m = B m > C m , D m < 0 0 0 Câu 72.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D ! ! ! 4x 2016 Câu 73 [3] Cho hàm số f (x) = x Tính tổng T = f +f + ··· + f +2 2017 2017 2017 2016 A T = 2016 B T = C T = 2017 D T = 1008 2017 Câu 74 Trong không gian, cho tam giác ABC có đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) hình chiếu B, C lên cạnh AC, AB Tọa độ hình chiếu ! ! A lên BC ! A ; 0; B (2; 0; 0) C ; 0; D ; 0; 3 Trang 6/10 Mã đề Câu 75 [4-1214h] Cho khối lăng trụ ABC.A0 B0C , khoảng cách từ C đến đường thẳng BB0 2, khoảng √ cách từ A đến đường thẳng BB0 CC √ 3, hình chiếu vng góc A lên mặt phẳng (A0 B0C ) trung điểm M B0C A0 M = Thể tích khối lăng trụ cho √ √ A B C D Câu 76 [3-1123d] Ba bạn A, B, C, bạn viết ngẫu nhiên lên bảng số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số viết có tổng chia hết cho 1728 23 1637 1079 B C D A 4913 4913 68 4913 Câu 77 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 1% năm Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau năm người thu (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định thời gian lãi suất khơng đổi người không rút tiền ra? A 10 năm B 11 năm C 12 năm D 13 năm Câu 78 Cho z1 , z2 hai nghiệm phương trình z2 + 3z + = Tính P = z1 z2 (z1 + z2 ) A P = 21 B P = −10 C P = −21 D P = 10 Câu 79 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 80 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 81 [1] Tập nghiệm phương trình log2 (x2 − 6x + 7) = log2 (x − 3) A {5} B {3} C {5; 2} D {2} Câu 82 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un C Nếu lim un = a > lim = lim = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = Câu 83 [2D1-3] Tìm giá trị tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − đồng biến khoảng có độ dài lớn 5 A − < m < B m ≥ C m ≤ D m > − 4 mx − Câu 84 Tìm m để hàm số y = đạt giá trị lớn [−2; 6] x+m A 26 B 45 C 34 D 67 Câu 85 [1] Đạo hàm hàm số y = x 1 A y0 = x B y0 = ln x ln C y0 = x ln x D y0 = x ln Trang 7/10 Mã đề Câu 86 Tính lim x→1 A −∞ x3 − x−1 B +∞ C D Câu 87 [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≤ C m ≥ D m > 4 4 Câu 88 Khi chiều cao hình chóp tăng lên n lần cạnh đáy giảm n lần thể tích A Khơng thay đổi B Tăng lên n lần C Tăng lên (n − 1) lần D Giảm n lần Câu 89 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật AB = 2a, BC = 4a (S AB) ⊥ (ABCD) Hai mặt bên (S BC) (S AD) cùng√hợp với đáy góc 30◦√ Thể tích khối chóp S ABCD √ √ 3 3 8a 8a a 4a A B C D 9 x2 Câu 90 Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x đoạn [−1; 1] Khi e 1 A M = e, m = B M = e, m = C M = e, m = D M = , m = e e 2 + + ··· + n Câu 91 [3-1133d] Tính lim n3 A B +∞ C D 3 Câu 92 Hàm số y = x3 − 3x2 + 3x − có cực trị? A B C D [ = 60◦ , S O Câu 93 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ 2a 57 a 57 a 57 B a 57 C D A 17 19 19 Câu 94 Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có vơ số B Khơng có C Có D Có hai Câu 95 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln 12 B ln C ln 14 D ln 10 Câu 96 Khẳng định sau đúng? A Hình lăng trụ có đáy đa giác hình lăng trụ B Hình lăng trụ đứng hình lăng trụ C Hình lăng trụ đứng có đáy đa giác hình lăng trụ D Hình lăng trụ tứ giác hình lập phương Câu 97 [3-c] Cho < x < 64 Tìm giá trị lớn f (x) = log42 x + 12 log22 x log2 x A 82 B 96 C 64 D 81 Câu 98 Xác định phần ảo số phức z = (2 + 3i)(2 − 3i) A Không tồn B 13 C D d = 60◦ Đường chéo Câu 99 Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vng A, AC = a, ACB 0 0 ◦ BC mặt bên (BCC B ) tạo với mặt phẳng (AA C C) góc 30 Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ 4a3 2a3 a3 A B C D a3 3 Trang 8/10 Mã đề Câu 100 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 4) C (1; 3; 2) D (2; 4; 6) 2−n Câu 101 Giá trị giới hạn lim n+1 A −1 B C D Câu 102 Hàm số y = −x3 + 3x − đồng biến khoảng đây? A (−1; 1) B (1; +∞) C (−∞; 1) D (−∞; −1) Câu 103 [3-1211h] Cho khối chóp S ABC có cạnh bên a mặt bên hợp với đáy góc 45◦ Tính √ √ √ thể tích khối chóp 3S ABC theo a a a3 a3 15 a3 15 B C D A 25 25 Câu 104 Hàm số y = −x3 + 3x2 − đồng biến khoảng đây? A R B (−∞; 1) C (2; +∞) D (0; 2) Câu 105 Tìm giá trị tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + nghịch biến khoảng (−∞; +∞) A [−1; 3] B [1; +∞) C [−3; 1] D (−∞; −3] x Câu 106 [2-c] Cho hàm số f (x) = x với x ∈ R hai số a, b thỏa mãn a + b = Tính f (a) + f (b) +3 C D −1 A B x2 − 12x + 35 Câu 107 Tính lim x→5 25 − 5x 2 A B +∞ C −∞ D − 5 x y Câu 108 [4-c] Xét số thực dương x, y thỏa mãn + = Khi đó, giá trị lớn biểu thức P = (2x2 + y)(2y2 + x) + 9xy 27 A 12 B 27 C D 18 Câu 109 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m ≤ C m > D m < 4 4 0 0 Câu 110 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 2n2 − Câu 111 Tính lim 3n + n4 A B C !4x !2−x Câu 112 Tập số x thỏa mãn ≤ # # " ! 2 A −∞; B −∞; C ; +∞ 5 D " ! D − ; +∞ Câu 113 [4-1243d] Trong tất số phức z thỏa mãn hệ thức |z − + 3i| = |z − − 5i| Tìm giá trị nhỏ |z + + i| √ √ √ √ 12 17 A B 34 C 68 D 17 Trang 9/10 Mã đề Câu 114 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 1200 cm2 B 160 cm2 C 160 cm2 D 120 cm2 Z ln(x + 1) Câu 115 Cho dx = a ln + b ln 3, (a, b ∈ Q) Tính P = a + 4b x2 A B −3 C D 3 x Câu 116 [2] √ Tìm m để giá trị nhỏ hàm số y = 2x + (m + 1)2 [0; 1] √ B m = ±1 C m = ±3 D m = ± A m = ± Câu 117 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D 1 Câu 118 [2D1-3] Tìm giá trị tham số m để hàm số y = − x3 − mx2 − (m + 6)x + đồng biến √ đoạn có độ dài 24 A −3 ≤ m ≤ B m = −3 C m = −3, m = D m = − n2 Câu 119 [1] Tính lim bằng? 2n + 1 A − B C D Câu 120 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai C Cả hai sai √ √ Câu 121 √Tìm giá trị lớn hàm số y = x + + √6 − x A + B C Câu 122 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A 2e + B 2e C e 2n − Câu 123 Tính lim 2n + 3n + A +∞ B −∞ C D Chỉ có (I) √ D D D x+2 Câu 124 Có giá trị nguyên tham số m để hàm số y = đồng biến khoảng x + 5m (−∞; −10)? A B Vô số C D Câu 125 [2-1223d] Tổng nghiệm phương trình log3 (7 − x ) = − x A B C D Câu 126 [2] Cho hàm số y = ln(2x + 1) Tìm m để y0 (e) = 2m + 1 − 2e + 2e + 2e A m = B m = C m = − 2e 4e + − 2e D m = − 2e 4e + x+3 Câu 127 [2D1-3] Có giá trị nguyên tham số m để hàm số y = nghịch biến khoảng x−m (0; +∞)? A Vô số B C D Trang 10/10 Mã đề x+1 Câu 128 Tính lim x→−∞ 6x − 1 A B C D Câu 129 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 20, 128 triệu đồng B 70, 128 triệu đồng C 50, triệu đồng D 3, triệu đồng Câu 130 Phần thực phần ảo số phức z = −3 + 4i A Phần thực 3, phần ảo B Phần thực 3, phần ảo −4 C Phần thực −3, phần ảo D Phần thực −3, phần ảo −4 - - - - - - - - - - HẾT- - - - - - - - - - Trang 11/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A B D D D 10 D 14 A 15 A 16 C D 18 A B C 21 A 23 D 12 13 A 19 C B 11 17 B 20 B 22 B 24 B 25 A C 26 A 27 C 28 29 A 30 31 A 32 A 33 A 34 C 35 36 B C C B 37 A 38 39 A 40 B 42 B 41 B C 44 43 A D 45 C 46 B 47 C 48 B 49 C 50 51 C 52 A 53 D 54 B 56 55 A 57 C D 58 A C 59 A 60 C 61 A 62 C 63 A 64 B 65 A 66 B 67 A 68 B 69 D 71 70 C D 73 72 C 74 C 75 C 76 77 C 78 79 C 80 81 A B D C D 82 C 83 D 84 C 85 D 86 C 87 88 B 89 A 90 D B 91 C 92 D 93 C 94 D 95 C 96 C C 97 D 98 99 D 100 101 A 102 A 103 A 104 105 C B 111 A 113 115 D C 108 D 110 D 112 D 114 116 B 117 A 118 119 A 120 A 121 D 106 107 A 109 D D C B C 122 123 C 124 125 C 126 127 C 128 A 129 A 130 D C D C