Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Hàm số y = x + 1 x có giá trị cực đại là A −1 B 2 C 1 D −2 Câu 2 Khối đa diện đều loại {4; 3} có số mặt A[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có 11 trang) Thời gian làm bài: 90 phút Mã đề thi 1 Câu Hàm số y = x + có giá trị cực đại x A −1 B C D −2 Câu Khối đa diện loại {4; 3} có số mặt A 10 B 12 C D Trong khẳng định sau đây, khẳng định đúng? Câu [3-12217d] Cho hàm số y = ln xy + y A xy = −e + B xy = −e − C xy0 = ey − D xy0 = ey + Câu Tính lim A cos n + sin n n2 + B −∞ C +∞ D Câu Khối đa diện thuộc loại {3; 4} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu Khi chiều cao hình chóp tăng lên n lần cạnh đáy giảm n lần thể tích A Tăng lên n lần B Không thay đổi C Giảm n lần D Tăng lên (n − 1) lần ! ! ! 2016 4x Tính tổng T = f +f + ··· + f Câu [3] Cho hàm số f (x) = x +2 2017 2017 2017 2016 D T = 1008 A T = 2017 B T = 2016 C T = 2017 Câu Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) D dx = log |u(x)| + C u(x) − n2 bằng? 2n2 + 1 1 A B C D − Câu 10 [2] Một người gửi 9, triệu đồng với lãi suất 8, 4% năm lãi suất hàng năm nhập vào vốn Hỏi theo cách sau năm người thu tổng số tiền 20 triệu đồng (Biết lãi suất không thay đổi) A năm B năm C năm D 10 năm Câu [1] Tính lim Câu 11 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (2; 2) B (1; −3) C (0; −2) D (−1; −7) Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C 2020 D log2 13 Câu 13 Tìm m để hàm số y = x3 − 3mx2 + 3m2 có điểm cực trị A m = B m , C m < D m > Trang 1/11 Mã đề Câu 14 Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có B Có hai C Khơng có D Có vơ số x+1 Câu 15 Tính lim x→−∞ 6x − 1 A B C D Câu 16 Cho hình chóp S ABCD có đáy ABCD hình vng biết S A ⊥ (ABCD), S C = a S C hợp với đáy một√góc 60◦ Thể tích khối √ √ chóp S ABCD √ 3 a a a3 a3 A B C D 16 24 48 48 Câu 17 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x2 y = x 11 A B C D 2 Câu 18 Khối chóp ngũ giác có số cạnh A 11 cạnh B cạnh C 10 cạnh D 12 cạnh Câu 19 Cho khối chóp có đáy n−giác Mệnh đề sau đúng? A Số đỉnh khối chóp số cạnh khối chóp B Số đỉnh khối chóp số mặt khối chóp C Số cạnh, số đỉnh, số mặt khối chóp D Số cạnh khối chóp số mặt khối chóp Câu 20 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Chỉ có (I) D Cả hai Câu 21 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D log(mx) Câu 22 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < ∨ m > D m < Câu 23 [1] Đạo hàm hàm số y = x 1 B y0 = C y0 = x ln A y0 = x ln x ln Câu 24 Cho hình chóp S ABC có đáy ABC tam giác cạnh a, biết S A đáy (ABC) góc 60◦ Thể√tích khối chóp S ABC √ a3 a3 a3 A B C 12 Câu 25 Cho √ số phức z thỏa mãn |z + √ 3| = |z − 2i| = |z − − 2i| Tính |z| A |z| = 17 B |z| = 10 C |z| = 17 2,4 Câu 26 [1-c] Giá trị biểu thức log0,1 10 A −7, B 72 C 7, D y0 = x ln x ⊥ (ABC) (S BC) hợp với √ a3 D D |z| = 10 D 0, Câu 27 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C D a Trang 2/11 Mã đề Câu 28 [2-c] Giá trị nhỏ hàm số y = x2 ln x đoạn [e−1 ; e] 1 B − C − A − e e 2e Câu 29 [1] Tập ! xác định hàm số y! = log3 (2x + 1) ! 1 A − ; +∞ B ; +∞ C −∞; 2 D −e ! D −∞; − d = 300 Câu 30 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vuông A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V khối lăng trụ cho √ √ 3 √ 3a 3 a A V = 6a3 B V = 3a3 C V = D V = 2 Z Câu 31 Cho xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b d = 60◦ Đường chéo Câu 32 Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vuông A, AC = a, ACB BC mặt bên (BCC B0 ) tạo với mặt phẳng (AA0C 0C) góc 30◦ Thể tích khối lăng trụ ABC.A0 B0C √ √ √ 3 √ a 2a 4a A a3 C D B 3 log 2x Câu 33 [3-1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = 3 x 2x ln 10 2x ln 10 x ln 10 Câu 34 [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất không thay đổi? A 16 tháng B 15 tháng C 17 tháng D 18 tháng + + ··· + n Mệnh đề sau đúng? Câu 35 [3-1132d] Cho dãy số (un ) với un = n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = Câu 36.! Dãy số sau có giới !n hạn 0? !n !n n 5 A B C D − e 3 A B Câu 37 Khối đa diện loại {3; 3} có tên gọi gì? A Khối 12 mặt B Khối lập phương C C Khối tứ diện D D Khối bát diện Câu 38 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a S A ⊥ (ABCD) Mặt bên (S CD) hợp với √ đáy góc 60◦ Thể tích√khối chóp S ABCD √ √ a3 2a3 a3 3 A B C a D 3 Câu 39 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A 2e + B C D 2e e Câu 40 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (1; 3; 2) D (2; 4; 3) Trang 3/11 Mã đề Câu 41 Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin x cos x C −1 + sin 2x x2 − 5x + Câu 42 Tính giới hạn lim x→2 x−2 A B −1 C D + sin 2x D Câu 43 Tập hợp điểm mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 số ảo A Đường phân giác góc phần tư thứ B Trục thực C Hai đường phân giác y = x y = −x góc tọa độ D Trục ảo Câu 44 [4-1121h] Cho hình chóp S ABCD đáy ABCD hình vng, biết AB = a, ∠S AD = 90◦ tam giác S AB tam giác Gọi Dt đường thẳng qua D song song với S C Gọi I giao điểm Dt mặt phẳng (S AB) Thiết diện hình chóp S ABCD với√mặt phẳng (AIC) có diện√tích √ 11a2 a2 a2 a B C D A 32 16 Câu 45 Hình chóp tứ giác có mặt phẳng đối xứng? A Một mặt B Bốn mặt C Hai mặt !4x !2−x ≤ Câu 46 Tập số x thỏa mãn # " ! # 2 A − ; +∞ B −∞; C −∞; D Ba mặt " ! ; +∞ D Câu 47 Phép đối xứng qua mp(P) biến đường thẳng d thành A d song song với (P) B d nằm P C d ⊥ P D d nằm P d ⊥ P ! x+1 Tính tổng S = f (1) + f (2) + · · · + f (2017) Câu 48 [3] Cho hàm số f (x) = ln 2017 − ln x 2017 4035 2016 A 2017 B C D 2018 2018 2017 Câu 49 √ Thể tích khối lăng√trụ tam giác có cạnh là: 3 A B C 12 √ D Câu 50 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 11 năm B 10 năm C 12 năm D 14 năm [ = 60◦ , S O Câu 51 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 Câu 52 Cho hàm số y = −x3 + 3x2 − Mệnh đề đúng? A Hàm số đồng biến khoảng (0; 2) B Hàm số đồng biến khoảng (0; +∞) C Hàm số nghịch biến khoảng (0; 2) D Hàm số nghịch biến khoảng (−∞; 2) Câu 53 Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A −3 B −6 C D Trang 4/11 Mã đề Câu 54 Nếu không sử dụng thêm điểm khác ngồi đỉnh hình lập phương chia hình lập phương thành A Năm tứ diện B Năm hình chóp tam giác đều, khơng có tứ diện C Bốn tứ diện hình chóp tam giác D Một tứ diện bốn hình chóp tam giác Câu 55 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 ! 1 Câu 56 Tính lim + + ··· + 1.2 2.3 n(n + 1) B C D A Câu 57 [4-1244d] Trong tất số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − + 5i| = |z − i| Biết rằng, |z + − i| nhỏ Tính P = ab 23 13 A B − C − D 25 100 16 100 Câu 58 [2] Tập xác định hàm số y = (x − 1) A D = R \ {1} B D = (1; +∞) C D = R D D = (−∞; 1) √ Câu 59 Cho khối chóp tam giác S ABC có cạnh đáy a Góc cạnh bên mặt phẳng đáy 300 Thể theo a √ √ √ tích khối chóp S ABC3 √ a a3 a3 a B C D A 18 36 6 Câu 60 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) x+1 Câu 61 Tính lim x→+∞ 4x + A B x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) C D x+3 nghịch biến khoảng Câu 62 [2D1-3] Có giá trị nguyên tham số m để hàm số y = x−m (0; +∞)? A B C Vô số D Câu 63 Khối đa diện loại {3; 5} có số mặt A 20 B 30 4x + Câu 64 [1] Tính lim bằng? x→−∞ x + A −4 B Câu 65 Hàm số sau khơng có cực trị x−2 A y = x4 − 2x + B y = 2x + C D 12 C −1 D C y = x3 − 3x D y = x + x Câu 66 Khối lăng trụ tam giác có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Trang 5/11 Mã đề ! 3n + 2 Câu 67 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 0 0 Câu 68.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A 2 Câu 69 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R [ = 60◦ , S A ⊥ (ABCD) Câu 70 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết rằng√ khoảng cách từ A đến cạnh √ √ S C a Thể tích khối chóp S ABCD 3 √ a a a3 A B C a D 12 un Câu 71 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ C D Câu 72 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 1200 cm2 B 160 cm2 C 120 cm2 D 160 cm2 Z ln(x + 1) Câu 73 Cho dx = a ln + b ln 3, (a, b ∈ Q) Tính P = a + 4b x2 A −3 B C D Câu 74 [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 3, 55 B 15, 36 C 20 D 24 Câu 75 Khối đa diện loại {4; 3} có số cạnh A 12 B 20 C 10 D 30 Câu 76 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (I) (III) D (II) (III) Câu 77 √ [4-1245d] Trong tất số phức z thỏa mãn hệ √ thức |z − + 3i| = Tìm |z − − i| A B C 10 D Trang 6/11 Mã đề Câu 78 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy góc 45◦ AB = 3a, BC = 4a Thể √ tích khối chóp S ABCD 10a C 40a3 D 10a3 A 20a3 B Câu 79 Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ C D √ √ 4n + − n + Câu 80 Tính lim 2n − 3 A B C +∞ D 2 Câu 81 Tính thể tích khối lập phương biết tổng diện tích √ tất mặt 18 A B 27 C 3 D Câu 82 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ mơđun z √ √ √ √ 13 A B C 26 D 13 13 √ Câu 83 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ Câu 84 Z Các khẳng định Z sau sai? k f (x)dx = k f (x)dx, k số !0 Z C f (x)dx = f (x) A Câu 85 Tính lim n+3 A B 1−x2 √ − 3m + = có nghiệm 3 C < m ≤ D ≤ m ≤ 4 − 4.2 x+ Z B Z D 1−x2 f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C C Câu 86 Khối đa diện loại {5; 3} có tên gọi gì? A Khối 20 mặt B Khối 12 mặt C Khối bát diện !2x−1 !2−x 3 Câu 87 Tập số x thỏa mãn ≤ 5 A (+∞; −∞) B (−∞; 1] C [1; +∞) D D Khối tứ diện D [3; +∞) Câu 88 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln B ln 12 C ln 10 D ln 14 Câu 89 Khối đa diện loại {5; 3} có số mặt A B 30 C 20 D 12 Câu 90 Khi tăng ba kích thước khối hộp chữ nhật lên n lần thể thích tăng lên A n3 lần B n2 lần C n lần D 3n3 lần Câu 91 Cho hàm số y = x3 + 3x2 Mệnh đề sau đúng? A Hàm số đồng biến khoảng (−∞; 0) (2; +∞) B Hàm số nghịch biến khoảng (−∞; −2) (0; +∞) C Hàm số đồng biến khoảng (−∞; −2) (0; +∞) D Hàm số nghịch biến khoảng (−2; 1) 2n + Câu 92 Tính giới hạn lim 3n + A B 2 C D Trang 7/11 Mã đề x−3 bằng? x→3 x + A −∞ B 2x + Câu 94 Tính giới hạn lim x→+∞ x + 1 A B Câu 93 [1] Tính lim C +∞ D C D −1 Câu 95 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A [3; 4) B ;3 C 2; D (1; 2) 2 √ ab Câu 96 Cho hình chóp S ABCD √ có đáy ABCD hình vng cạnh a Hai mặt phẳng (S AB) (S AD) vng √ góc với đáy, S C = a Thể tích khối chóp S 3.ABCD √ a a a3 A B a3 C D Câu 97 Thể tích khối chóp có diện tích đáy S chiều cao h 1 A V = S h B V = 3S h C V = S h D V = S h Câu 98 Cho khối chóp có đáy n−giác Mệnh đề sau đúng? A Số đỉnh khối chóp 2n + B Số mặt khối chóp số cạnh khối chóp C Số mặt khối chóp 2n+1 D Số cạnh khối chóp 2n Câu 99 [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ông muốn hoàn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng không đổi thời gian ông A hoàn nợ 120.(1, 12)3 100.1, 03 A m = triệu B m = triệu (1, 12)3 − 100.(1, 01)3 (1, 01)3 C m = triệu D m = triệu (1, 01)3 − Câu 100 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ v n ! un = +∞ D Nếu lim un = a > lim = lim Câu 101 Giá √ trị cực đại hàm số y√= x − 3x − 3x + √ A −3 + B −3 − C + √ D − Câu 102 [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 A k = B k = C k = D k = 18 15 Trang 8/11 Mã đề Câu 103 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp đôi thể tích khối hộp tương ứng sẽ: A Tăng gấp lần B Tăng gấp đôi C Tăng gấp lần D Tăng gấp lần Câu 104 Hình hình sau khơng khối đa diện? A Hình chóp B Hình lập phương C Hình tam giác 2−n Câu 105 Giá trị giới hạn lim n+1 A B C −1 0 D Hình lăng trụ D Câu 106 [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách √ từ C đến đường thẳng BB0 2, khoảng cách từ A đến đường thẳng BB0 CC √ 3, hình chiếu vng góc A lên mặt phẳng (A0 B0C ) trung điểm M B0C A0 M = Thể tích khối lăng trụ cho √ √ B C D A Câu 107 Khối đa diện thuộc loại {4; 3} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu 108 Dãy số sau có giới hạn 0? n2 − 3n n2 − − 2n n2 + n + A un = B u = C u = D u = n n n n2 5n − 3n2 5n + n2 (n + 1)2 Z x a a Câu 109 Cho I = dx = + b ln + c ln d, biết a, b, c, d ∈ Z phân số tối giản Giá √ d d 4+2 x+1 trị P = a + b + c + d bằng? A P = 28 B P = −2 C P = 16 D P = ! 1 Câu 110 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n D A +∞ B C 2 2 Câu 111 Tìm giá trị nhỏ hàm số y = (x − 2x + 3) − A −3 B −7 C −5 D Không tồn Câu 112 Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) (S AC) vng góc với (S BC) √ √ Thể tích khối chóp S 3.ABC √ √ a a a3 a3 A B C D 12 12 √ Câu 113 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 62 C Vô số D 64 √ Câu 114.√Thể tích khối lập phương có cạnh a √ √ 2a3 A B V = a3 C V = 2a3 D 2a3 mx − Câu 115 Tìm m để hàm số y = đạt giá trị lớn [−2; 6] x+m A 45 B 26 C 67 D 34 Câu 116 Phần thực phần ảo số phức z = −3 + 4i A Phần thực 3, phần ảo −4 B Phần thực −3, phần ảo −4 C Phần thực −3, phần ảo D Phần thực 3, phần ảo Trang 9/11 Mã đề Câu 117 √ số phức z thỏa mãn |z − i| = Tìm giá trị lớn |z| √ [4-1246d] Trong tất B C D A Câu 118 Bát diện thuộc loại A {3; 4} B {4; 3} C {5; 3} D {3; 3} Câu 119 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách √ hai đường thẳng BD và√S C √ √ a a a A D B C a [ = 60◦ , S O Câu 120 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S BC) √ √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C a 57 D A 19 19 17 Câu 121 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vng cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 A B C D 12 12 q Câu 122 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 4] C m ∈ [0; 1] D m ∈ [−1; 0] Câu 123 [2D1-3] Tìm giá trị tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − đồng biến khoảng có độ dài lớn 5 B m > − C m ≤ D m ≥ A − < m < 4 Câu 124 Mỗi đỉnh hình đa diện đỉnh chung A Bốn mặt B Ba mặt C Năm mặt D Hai mặt Câu 125 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a A a C D B Câu 126 Phát biểu sau sai? A lim un = c (un = c số) B lim k = n n C lim q = (|q| > 1) D lim = n √3 Câu 127 [1] Cho a > 0, a , Giá trị biểu thức loga a 1 A − B −3 C D 3 Câu 128 Biểu thức sau đây√khơng có nghĩa √ −3 A (−1)−1 B −1 C (− 2)0 D 0−1 x−2 x−1 x x+1 Câu 129 [4-1212d] Cho hai hàm số y = + + + y = |x + 1| − x − m (m tham x−1 x x+1 x+2 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−3; +∞) B (−∞; −3] C [−3; +∞) D (−∞; −3) Câu 130 [1] Cho a > 0, a , Giá trị biểu thức log a1 a2 A B −2 C 2 D − Trang 10/11 Mã đề - - - - - - - - - - HẾT- - - - - - - - - - Trang 11/11 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi D C A C D D 11 13 14 D B D 23 D 12 B 21 D 10 A 15 A 19 C C 17 D B 16 C 18 C 20 B 22 B 24 C D 25 B 26 A 27 B 28 C 30 C 29 A 31 D 32 A 33 D 34 A 35 D 36 37 39 C 38 B C 42 43 C 44 B D 48 49 A C B 50 A B 52 A 53 A 55 57 B 46 A 47 51 B 40 A 41 45 C C B 54 D 56 D 58 B 59 A 60 61 A 62 B 63 A 64 B 65 B 67 A D 66 D 68 D 69 A 70 A D 71 D 72 73 A 74 B 75 A 76 B 77 D 78 A 79 C 80 A 81 C 82 B 84 B B D 83 85 C 86 87 C 88 D 89 91 D 90 A D 92 C 93 B 94 95 B 96 D 98 D 100 D 97 A 99 D 101 A 103 A 104 C D 106 108 110 C B 112 A 105 C 107 C 109 D 111 D 113 D 114 116 C D 117 D 119 A 120 A 121 A 122 D 126 C 128 130 123 B D B 125 C 127 C 129 B B 115 118 A 124 C B