Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x),G(x) Xét các mệnh đề s[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút Mã đề thi Câu Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (II) D (I) (III) Câu [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ơng ta muốn hồn nợ cho ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp cách tháng, số tiền hồn nợ tháng ơng A trả hết nợ sau năm kể từ ngày vay Biết tháng ngân hàng tính lãi số dư nợ thực tế tháng Hỏi số tiền tháng ông ta cần trả cho ngân hàng gần với số tiền ? A 2, 22 triệu đồng B 2, 20 triệu đồng C 3, 03 triệu đồng D 2, 25 triệu đồng Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b D lim+ f (x) = f (a) lim+ f (x) = f (b) Câu Tập số x thỏa mãn log0,4 (x − 4) + ≥ A [6, 5; +∞) B (−∞; 6, 5) C (4; +∞) D (4; 6, 5] Câu [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn tháng, lãi suất 2% quý Sau tháng, người gửi thêm 100 triệu đồng với kỳ hạn lãi suất trước Tổng số tiền người nhận sau năm gửi tiền vào ngân hàng gần kết sau đây? Biết suốt thời gian gửi tiền lãi suất ngân hàng khơng thay đổi người khơng rút tiền A 216 triệu B 212 triệu C 210 triệu D 220 triệu √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B C − D 4 Câu Hàm số y = x3 − 3x2 + đồng biến trên: A (0; 2) B (−∞; 0) (2; +∞) C (−∞; 2) D (0; +∞) Câu Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 1/10 Mã đề √ Câu [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 3a 38 a 38 B C D A 29 29 29 29 7n2 − 2n3 + Câu 10 Tính lim 3n + 2n2 + A - B C D 3 Câu 11 Cho hình chóp S ABC có đáy ABC tam giác vuông cân A với AB = AC = a, biết tam giác S AB cân S nằm mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) góc 45◦ Thể tích khối chóp S ABC a3 a3 a3 B C a3 D A 24 12 Câu 12 Khối đa diện sau có mặt khơng phải tam giác đều? A Tứ diện B Thập nhị diện C Bát diện D Nhị thập diện Câu 13 Khối đa diện loại {3; 3} có tên gọi gì? A Khối lập phương B Khối 12 mặt C Khối bát diện D Khối tứ diện Câu 14 [3-1211h] Cho khối chóp S ABC có cạnh bên a mặt bên hợp với đáy góc 45◦ Tính thể√tích khối chóp S ABC√ theo a √ a3 a3 15 a3 a3 15 A B C D 25 25 Câu 15 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) B 2e + A 2e Câu 16 Z Các khẳng định Z sau sai? D Z f (x)dx, k số B f (x)dx = F(x) + C ⇒ !0 Z Z Z C f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C D f (x)dx = f (x) A k f (x)dx = k C √ Câu 17 [1] Cho a > 0, a , Giá trị biểu thức loga a A −3 B − C 3 D e Z f (t)dt = F(t) + C d = 30◦ , biết S BC tam giác Câu 18 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 26 13 Câu 19 Cho z nghiệm phương trình x2 + x + = Tính P =√z4 + 2z3 − z √ −1 + i −1 − i D P = A P = B P = 2i C P = 2 Câu 20 Cho hình chóp S ABCD có đáy ABCD hình thang vng A D; AD = CD = a; AB = 2a; tam giác√S AB nằm mặt √ S ABCD √ phẳng vng góc với (ABCD) Thể tích khối chóp 3 √ a a a D A B C a3 Câu 21 Khối đa diện loại {3; 4} có số mặt A B 12 C D 10 Trang 2/10 Mã đề Câu 22 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D Câu 23 Khối lăng trụ tam giác có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu 24 Khẳng định sau đúng? A Hình lăng trụ đứng có đáy đa giác hình lăng trụ B Hình lăng trụ có đáy đa giác hình lăng trụ C Hình lăng trụ đứng hình lăng trụ D Hình lăng trụ tứ giác hình lập phương Câu 25 Hình lập phương có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 26 Cho hình chóp S ABC Gọi M trung điểm S A Mặt phẳng BMC chia hình chóp S ABC thành A Một hình chóp tam giác hình chóp tứ giác B Hai hình chóp tam giác C Một hình chóp tứ giác hình chóp ngũ giác D Hai hình chóp tứ giác Câu 27 [1-c] Giá trị biểu thức log0,1 102,4 A 72 B 0, C 7, D −7, x x−3 x−2 x−1 + + + y = |x + 2| − x − m (m tham Câu 28 [4-1213d] Cho hai hàm số y = x−2 x−1 x x+1 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A [2; +∞) B (−∞; 2) C (2; +∞) D (−∞; 2] Câu 29 Phát biểu sau sai? A lim = n C lim un = c (un = c số) = nk D lim qn = (|q| > 1) ! 1 Câu 30 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 B lim Câu 31 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = √ Câu 32 [1] Biết log6 a = log6 a A 108 B 36 C D Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 a b2 + c2 abc b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 34 Cho hình chóp S ABCD có đáy ABCD hình vng biết S A ⊥ (ABCD), S C = a S C hợp với đáy một√góc 60◦ Thể tích khối √ chóp S ABCD √ √ 3 a a a3 a3 A B C D 24 16 48 48 Trang 3/10 Mã đề Câu 35 Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = B m = −1 C m = −3 D m = −2 Câu 36 Cho hàm số y = |3 cos x − sin x + 8| với x ∈ [0; 2π] Gọi M, m giá trị lớn nhất, giá trị nhỏ √ √M + m √ hàm số Khi tổng A B C D 16 Câu 37 [1] Giá trị biểu thức log √3 10 1 A B −3 C D − 3 Câu 38 Phần thực phần ảo số phức z = −i + A Phần thực 4, phần ảo −1 B Phần thực 4, phần ảo C Phần thực −1, phần ảo −4 D Phần thực −1, phần ảo Câu 39 Khối đa diện thuộc loại {3; 4} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt x2 − 5x + Câu 40 Tính giới hạn lim x→2 x−2 A B 5 Câu 41 Tính lim n+3 A B Câu 42 Khối đa diện loại {5; 3} có số cạnh A 20 B 30 C −1 D C D C D 12 Câu 43 [1] Cho a > 0, a , Giá trị biểu thức a √ A 25 B C D 5 12 + 22 + · · · + n2 Câu 44 [3-1133d] Tính lim n3 C D +∞ A B 3 Câu 45 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = −ey − B xy0 = −ey + C xy0 = ey − D xy0 = ey + log √a Câu 46 Tìm m để hàm số y = x4 − 2(m + 1)x2 − có cực trị A m > −1 B m ≥ C m > D m > Câu 47 Khối đa diện loại {3; 5} có số đỉnh A B 30 D 12 C 20 Câu 48 [4-1246d] Trong tất số phức z thỏa mãn |z√− i| = Tìm giá trị lớn √ |z| D A B C Câu 49 [1-c] Giá trị biểu thức log2 36 − log2 144 A −4 B C D −2 Câu 50 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Trang 4/10 Mã đề Câu 51 Ba kích thước hình hộp chữ nhật làm thành cấp số nhân có cơng bội Thể tích hình hộp cho 1728 Khi đó, kích thước hình hộp √ là√ A 6, 12, 24 B 2, 4, C 3, 3, 38 D 8, 16, 32 Câu 52 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 1% năm Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau năm người thu (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định thời gian lãi suất không đổi người khơng rút tiền ra? A 12 năm B 13 năm C 10 năm D 11 năm √ Câu 53 Thể tích khối lập phương có cạnh a √ √ √ 2a3 C A V = 2a3 B V = a3 D 2a3 Câu 54 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B lim f (x) = f (a) x→a x→a x→a C lim+ f (x) = lim− f (x) = a x→a x→a Câu 55 Tính lim A −∞ D f (x) có giới hạn hữu hạn x → a 2n − + 3n + B 2n2 C +∞ D Câu 56 [2] Cho hàm số f (x) = x x Giá trị f (0) A f (0) = B f (0) = 10 C f (0) = ln 10 ln 10 D f (0) = Câu 57 [2-c] Giá trị lớn hàm số f (x) = e x −3x+3 đoạn [0; 2] A e2 B e5 C e D e3 Câu 58 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m < C m ≥ D m > Câu 59 Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có vơ số B Có C Khơng có D Có hai Câu 60 Hình hộp chữ nhật có ba kích thước khác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt √ Câu 61 [12215d] Tìm m để phương trình x+ B ≤ m ≤ A ≤ m ≤ 4 x−3 Câu 62 [1] Tính lim bằng? x→3 x + A +∞ B 1−x2 √ − 4.2 x+ 1−x2 − 3m + = có nghiệm C m ≥ D < m ≤ C −∞ D Câu 63 Khối đa diện thuộc loại {3; 3} có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt x2 Câu 64 Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x đoạn [−1; 1] Khi e 1 A M = e, m = B M = , m = C M = e, m = D M = e, m = e e Câu 65 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Trang 5/10 Mã đề d = 60◦ Đường chéo Câu 66 Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vuông A, AC = a, ACB BC mặt bên (BCC B0 ) tạo với mặt phẳng (AA0C 0C) góc 30◦ Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ 4a3 2a3 a3 B C a D A 3 Câu 67 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 B C D A 12 12 !4x !2−x Câu 68 Tập số x thỏa mãn ≤ # # " ! " ! 2 2 A −∞; B −∞; C ; +∞ D − ; +∞ 5 Câu 69 Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ C D Câu 70 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp đơi thể tích khối hộp tương ứng sẽ: A Tăng gấp lần B Tăng gấp lần C Tăng gấp đôi D Tăng gấp lần Câu 71 [4-1243d] Trong tất số phức z thỏa mãn hệ thức |z − + 3i| = |z − − 5i| Tìm giá trị nhỏ |z + + i| √ √ √ √ 12 17 A 34 B C D 68 17 0 0 Câu 72.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2mx + 1 Câu 73 Giá trị lớn hàm số y = đoạn [2; 3] − m nhận giá trị m−x A −2 B C D −5 Câu 74 [2] Cho hàm số f (x) = ln(x4 + 1) Giá trị f (1) ln A B C Câu 75 Xác định phần ảo số phức z = (2 + 3i)(2 − 3i) A 13 B C D D Không tồn Câu 76 [2-c] Giá trị lớn M giá trị nhỏ m hàm số y = x2 − ln x [e−1 ; e] A M = e−2 + 2; m = B M = e−2 + 1; m = C M = e−2 − 2; m = D M = e2 − 2; m = e−2 + Câu 77 Tìm giá trị nhỏ hàm số y = (x2 − 2x + 3)2 − A −7 B −5 C Không tồn π Câu 78 [2-c] Giá trị lớn hàm số y = e x cos x đoạn 0; √ √ π4 π6 A e B e C 2 Câu 79 [12213d] Có giá trị nguyên m để phương trình nhất? A B C D −3 D 3|x−1| π3 e = 3m − có nghiệm D Trang 6/10 Mã đề [ = 60◦ , S O Câu 80 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 A a 57 B C D 19 19 17 Câu 81 Cho khối chóp S ABC √ có đáy ABC tam giác cạnh a Hai mặt bên (S AB) (S AC) vng góc√với đáy S C = a √ Thể tích khối chóp S ABC√là √ 3 2a a a3 a3 A B C D 12 Câu 82 Cho số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = Tìm giá trị nhỏ P = xy + x + 2y + 17 A −15 B −9 C −12 D −5 Câu 83 Khối đa diện loại {5; 3} có tên gọi gì? A Khối bát diện B Khối 20 mặt C Khối tứ diện D Khối 12 mặt Câu 84 [2] Đạo hàm hàm số y = x ln x A y0 = ln x − B y0 = − ln x C y0 = + ln x D y0 = x + ln x C D 10 Câu 85 Khối đa diện loại {3; 4} có số đỉnh A B ! 1 + + ··· + Câu 86 Tính lim 1.2 2.3 n(n + 1) D 2 Câu 87 [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 B k = C k = D k = A k = 15 18 A B C Câu 88 Cho hình chóp S ABCD √ có đáy ABCD hình vuông cạnh a Hai mặt phẳng (S AB) (S AD) vng √ góc với đáy, S C = a Thể tích khối chóp S 3.ABCD √ a3 a a3 3 A B a C D 3 Câu 89 Khối đa diện loại {3; 3} có số đỉnh A B C D Câu 90 [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ơng muốn hồn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng khơng đổi thời gian ơng A hồn nợ 100.(1, 01)3 120.(1, 12)3 A m = triệu B m = triệu (1, 12)3 − 100.1, 03 (1, 01)3 C m = triệu D m = triệu (1, 01) − Câu 91.√Thể tích tứ diện √ cạnh a √ √ 3 a a a3 a3 A B C D 12 Câu 92 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? Trang 7/10 Mã đề (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai ngun hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Khơng có câu D Câu (II) sai sai Câu 93 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z B f (x)dx = f (x) f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 94 Tứ diện thuộc loại A {4; 3} B {3; 4} C {5; 3} D {3; 3} Câu 95 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp ba thể tích khối hộp tương ứng sẽ: A Tăng gấp lần B Tăng gấp lần C Tăng gấp 27 lần D Tăng gấp 18 lần Câu 96 Một chất điểm chuyển động trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm từ thời điểm t = 0(s) đến thời điểm t = 4(s) A 24 m B m C 12 m D 16 m Câu 97 Cho hình chóp S ABC có đáy ABC tam giác vuông cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ a3 a3 a3 a3 B C D A 48 24 24 Câu 98 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (1; −3) B (2; 2) C (−1; −7) D (0; −2) Câu 99 Hình chóp tứ giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 100 Khối đa diện thuộc loại {3; 5} có đỉnh, cạnh, mặt? A 12 đỉnh, 30 cạnh, 20 mặt B 20 đỉnh, 30 cạnh, 12 mặt C 12 đỉnh, 30 cạnh, 12 mặt D 20 đỉnh, 30 cạnh, 20 mặt Câu 101 [2-c] Giá trị nhỏ hàm số y = (x2 − 2)e2x đoạn [−1; 2] A −e2 B 2e2 C 2e4 D −2e2 Câu 102 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m > C m ≥ D m < 4 4 Câu 103 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 104 Phát biểu sau sai? A lim qn = với |q| > C lim un = c (Với un = c số) = với k > nk D lim √ = n B lim Trang 8/10 Mã đề Câu 105 Thể tích khối lăng √ trụ tam giác có cạnh√bằng là: 3 B C A 4 √ D 12 Câu 106 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a a 2a 8a A B C D 9 9 Câu 107 [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép ổn định tháng lĩnh 61.758.000 Hỏi lãi suất ngân hàng tháng bao nhiêu? Biết lãi suất không thay đổi thời gian gửi A 0, 6% B 0, 5% C 0, 7% D 0, 8% Câu 108 Khối đa diện loại {4; 3} có số mặt A B 12 C D 10 Câu 109 Z Trong khẳng định sau, khẳng định sai? u (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 110 Hình hình sau khơng khối đa diện? A Hình chóp B Hình lăng trụ C Hình tam giác D Hình lập phương Z ln(x + 1) Câu 111 Cho dx = a ln + b ln 3, (a, b ∈ Q) Tính P = a + 4b x2 A B −3 C D Câu 112 [4-c] Xét số thực dương x, y thỏa mãn x + 2y = Khi đó, giá trị lớn biểu thức P = (2x2 + y)(2y2 + x) + 9xy 27 A B 27 C 12 D 18 Câu 113 Khối chóp ngũ giác có số cạnh A cạnh B 11 cạnh C 10 cạnh D 12 cạnh Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e + C xy0 = ey − D xy0 = −ey + Câu 114 [3-12217d] Cho hàm số y = ln A xy0 = −ey − Câu 115 Khi chiều cao hình chóp tăng lên n lần cạnh đáy giảm n lần thể tích A Tăng lên (n − 1) lần B Tăng lên n lần C Không thay đổi D Giảm n lần π Câu 116 Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại điểm x = , x = π Tính giá √ trị biểu √ thức T = a + b √ A T = B T = 3 + C T = D T = Câu 117 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C D a Trang 9/10 Mã đề Câu 118 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc Biết rằng√ khoảng cách từ A đến cạnh S C a Thể tích khối√chóp S ABCD √ a3 a3 C A B a3 Câu 119 Mỗi đỉnh hình đa diện đỉnh chung A Năm cạnh B Ba cạnh C Bốn cạnh [ = 60◦ , S A ⊥ (ABCD) BAD √ a3 D 12 D Hai cạnh Câu 120 Biểu diễn hình học số phức z = + 8i điểm điểm sau đây? A A(−4; −8)( B A(4; 8) C A(4; −8) D A(−4; 8) Câu 121 Cho hai hàm y = f (x), y = Z g(x) có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 122 Khối lập phương có đỉnh, cạnh mặt? A đỉnh, 10 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt + + ··· + n Câu 123 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ D lim un = C lim un = Câu 124 Cho z1 , z2 hai nghiệm phương trình z2 + 3z + = Tính P = z1 z2 (z1 + z2 ) A P = 10 B P = 21 C P = −21 D P = −10 Câu 125 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 11 năm B 12 năm C 10 năm D 14 năm Câu 126 Hàm số y = −x3 + 3x2 − đồng biến khoảng đây? A (−∞; 1) B (0; 2) C (2; +∞) Câu 127 Khối đa diện loại {3; 5} có số mặt A 30 B C 12 √ √ x + + 6−x Câu 128 Tìm giá trị lớn hàm số y = √ √ A B C D R D 20 D + √ Câu 129 [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 3, 55 B 15, 36 C 24 D 20 Câu 130 [1] Đạo hàm hàm số y = x 1 B y0 = x A y0 = ln 2 ln x C y0 = x ln D y0 = x ln x - - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C A C D B C B C 11 10 A C B 13 D 15 B 14 B 16 C 17 12 18 D 19 A 20 A 21 A 22 A 23 25 D D 24 A 26 B 27 D 28 A 29 D 30 31 B 32 33 B 34 35 D 36 37 D 38 A 39 A 41 C B B D C D 40 B 42 43 A C B 44 45 C 46 A C 47 D 48 49 D 50 A 51 A B 52 A 53 D 54 B 55 B 56 C 57 B 58 C 59 D 60 A 61 A 62 63 A 64 A 65 C 66 67 C 68 B C D 70 69 A 71 B C 73 75 72 76 D B D 83 80 C 82 C 84 C 85 C 86 A 88 C 89 90 C 91 92 C 93 94 D 95 96 D 97 98 D D D C D 104 A 105 C 106 107 C 108 A 109 A D 110 C C C D 116 117 D 118 A 120 B 121 D B 122 C D 124 125 A 127 D 114 115 123 C 112 B 113 129 B 102 A 103 119 D 100 A 101 A 111 C 78 A C 79 81 B 74 A B 77 D D 126 B 128 B 130 B C C