TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→3 x2 − 9 x − 3 A 6 B −3 C 3 D +∞ Câu 2 [1225d][.]
TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 11 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x2 − Câu Tính lim x→3 x − A B −3 C D +∞ Câu [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > cos n + sin n Câu Tính lim n2 + A +∞ B C −∞ D Câu Cho hình chóp S ABCD √ có đáy ABCD hình vng cạnh a Hai mặt phẳng (S AB) (S AD) vng góc với đáy, S C = a Thể √ tích khối chóp S ABCD √là 3 a a a3 A a3 B C D Câu Cho số phức z thỏa mãn |z +√3| = |z − 2i| = |z − √ − 2i| Tính |z| C |z| = 10 D |z| = 17 A |z| = 10 B |z| = 17 tan x + m Câu [2D1-3] Tìm giá trị thực tham số m để hàm số y = nghịch biến khoảng m tan x + π 0; A (−∞; 0] ∪ (1; +∞) B (1; +∞) C (−∞; −1) ∪ (1; +∞) D [0; +∞) x+1 Câu Tính lim x→+∞ 4x + 1 B C D A Câu Khối đa diện loại {3; 3} có số cạnh A B C D x+1 Câu Tính lim x→−∞ 6x − 1 A B C D Câu 10 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D Câu 11 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R B log(mx) = có nghiệm thực log(x + 1) C m < ∨ m = D m < Câu 12 [1226d] Tìm tham số thực m để phương trình A m ≤ B m < ∨ m > Trang 1/11 Mã đề Câu 13 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) D lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b Câu 14 [3-12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 4) C (2; 4; 3) D (2; 4; 6) Câu 16 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất không thay đổi? A 102.016.000 B 102.423.000 C 102.016.000 D 102.424.000 d = 300 Câu 17 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vng A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V √ √ khối lăng trụ cho √ a3 3a 3 D V = C V = 3a A V = 6a B V = 2 Câu 18 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp ba thể tích khối hộp tương ứng sẽ: A Tăng gấp 18 lần B Tăng gấp lần C Tăng gấp lần D Tăng gấp 27 lần log2 240 log2 15 − + log2 Câu 19 [1-c] Giá trị biểu thức log3,75 log60 A B −8 C D Câu 20 [2] Cho hàm số f (x) = x x Giá trị f (0) D f (0) = ln 10 ln 10 Câu 21 Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) đường thẳng x+1 y−5 z d: = = Tìm véctơ phương ~u đường thẳng ∆ qua M, vng góc với đường thẳng 2 −1 d đồng thời cách A khoảng bé A ~u = (2; 1; 6) B ~u = (3; 4; −4) C ~u = (1; 0; 2) D ~u = (2; 2; −1) 0 d = 60◦ Đường chéo Câu 22 Cho lăng trụ đứng ABC.A B C có đáy tam giác vuông A, AC = a, ACB BC mặt bên (BCC B0 ) tạo với mặt phẳng (AA0C 0C) góc 30◦ Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ 4a3 2a3 a A B C a3 D 3 Câu 23 [1] Đạo hàm hàm số y = x 1 A y0 = x ln B y0 = x C y0 = D y0 = x ln x ln x ln Câu 24 √ [4-1246d] Trong tất số phức z thỏa mãn |z√− i| = Tìm giá trị lớn |z| A B C D A f (0) = 10 B f (0) = C f (0) = Câu 25 Khối lăng trụ tam giác có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu 26 [2] Tổng nghiệm phương trình x−1 x = 8.4 x−2 A − log2 B − log2 C − log3 D − log2 Trang 2/11 Mã đề Câu 27 Tính lim n+3 A B C D 2 sin x Câu 28 + 2cos x √ [3-c] Giá trị nhỏ giá trị lớn hàm√số f (x) = √ A 2 B C D 2 Câu 29 Bát diện thuộc loại A {4; 3} B {5; 3} C {3; 4} D {3; 3} Câu 30 Khối lập phương có đỉnh, cạnh mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 10 cạnh, mặt x+2 đồng biến khoảng Câu 31 Có giá trị nguyên tham số m để hàm số y = x + 5m (−∞; −10)? A B C Vô số D Câu 32 Khối đa diện loại {3; 4} có số cạnh A B C 12 D 10 Câu 33 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a a 2a B C D A 9 9 Câu 34 [2-c] Giá trị lớn M giá trị nhỏ m hàm số y = x − ln x [e−1 ; e] A M = e−2 + 2; m = B M = e2 − 2; m = e−2 + C M = e−2 − 2; m = D M = e−2 + 1; m = Câu 35 Khối đa diện loại {3; 4} có số đỉnh A B C D 10 Câu 36 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a B A a C D x−3 Câu 37 [1] Tính lim bằng? x→3 x + A −∞ B C D +∞ Câu 38 [1] Tập xác định hàm số y = x +x−2 A D = [2; 1] B D = R C D = (−2; 1) D D = R \ {1; 2} Câu 39 [2-c] Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x + ln x đoạn [1; e] Giá trị T = M + m 2 A T = e + B T = e + C T = e + D T = + e e 0 0 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A √ B √ C √ D 2 2 2 a + b2 a +b a +b a +b Câu 41 Tìm m để hàm số y = x3 − 3mx2 + 3m2 có điểm cực trị A m < B m = C m > D m , Câu 42 Khối đa diện loại {5; 3} có số cạnh A 20 B 30 D 12 C Trang 3/11 Mã đề Câu 43 Khối lập phương thuộc loại A {4; 3} B {3; 4} C {3; 3} D {5; 3} Câu 44 Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A −3 B C −6 D Câu 45 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A 2e Câu 46 Tính lim A B 2e + C D e B C D 2n2 − 3n6 + n4 x = + 3t Câu 47 [1232h] Trong không gian Oxyz, cho đường thẳng d : y = + 4t Gọi ∆ đường thẳng qua z = điểm A(1; 1; 1) có véctơ phương ~u = (1; −2; 2) Đường phân giác góc nhọn tạo d ∆ có phương trình x = + 3t x = + 7t x = −1 + 2t x = −1 + 2t A B C y = + 4t y=1+t y = −10 + 11t D y = −10 + 11t z = − 5t z = + 5t z = −6 − 5t z = − 5t Câu 48 Tứ diện thuộc loại A {3; 3} B {5; 3} C {4; 3} D {3; 4} Z Câu 49 Cho xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b 1 C D 2 Câu 50 Một chất điểm chuyển động trục với vận tốc v(t) = 3t − 6t(m/s) Tính qng đường chất điểm từ thời điểm t = 0(s) đến thời điểm t = 4(s) A m B 16 m C 24 m D 12 m A B Câu 51 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (III) sai C Câu (II) sai D Câu (I) sai sai − n2 bằng? Câu 52 [1] Tính lim 2n + 1 1 A B − C D 2 0 Câu 53 [3-1122h] Cho hình lăng trụ ABC.A B C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a BC Khi thể tích khối lăng trụ √ √ √ √ a3 a3 a3 a3 A B C D 24 12 36 Trang 4/11 Mã đề Câu 54.√Biểu thức sau khơng có nghĩa B 0−1 A (− 2)0 C (−1)−1 D √ −1 −3 Câu 55 [2-c] Giá trị lớn hàm số f (x) = e x −3x+3 đoạn [0; 2] A e3 B e2 C e D e5 Câu 56 Ba kích thước hình hộp chữ nhật làm thành cấp số nhân có cơng bội Thể tích hình hộp cho 1728 Khi đó,√các kích √ thước hình hộp A 6, 12, 24 B 3, 3, 38 C 2, 4, D 8, 16, 32 Câu 57 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln 14 B ln 10 C ln 12 D ln Câu 58 [2-c] Giá trị nhỏ hàm số y = x2 ln x đoạn [e−1 ; e] 1 B − C − D −e A − e 2e e Câu 59 Cho hình chóp S ABC có đáy ABC tam giác vuông cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ a3 a3 a3 a3 A B C D 48 24 24 √ √ Câu 60 Phần thực√và phần ảo số √ phức z = − − 3i √l √ A Phần thực 2, √ phần ảo − √ B Phần thực √2 − 1, phần ảo −√ D Phần thực − 1, phần ảo C Phần thực − 2, phần ảo − Câu 61 Hình chóp tứ giác có mặt phẳng đối xứng? A Hai mặt B Một mặt C Bốn mặt Câu 62 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) liên tục K D Ba mặt B f (x) xác định K D f (x) có giá trị lớn K Câu 63 Cho hình chóp S ABCD có √ đáy ABCD hình chữ nhật AD = 2a, AB = a Gọi H trung điểm AD, biết S H ⊥ (ABCD), S A = a Thể tích khối chóp √ S ABCD √ 3 4a 2a 2a 4a3 A B C D 3 3 Câu 64 [4] Cho lăng trụ ABC.A0 B0C có chiều cao đáy tam giác cạnh Gọi M, N P tâm mặt bên ABB0 A0 , ACC A0 , BCC B0 Thể tích khối đa diện lồi có đỉnh A, B, C, M, N, P √ √ √ √ 14 20 B C D A 3 Câu 65 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu C Cả hai câu sai D Chỉ có (I) Câu 66 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối √ chóp S ABMN √ √ √ 2a 5a3 a3 4a3 A B C D 3 Trang 5/11 Mã đề Câu 67 [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m > D m ≤ Câu 68 [2] Cho hàm số y = ln(2x + 1) Tìm m để y0 (e) = 2m + 1 − 2e + 2e − 2e B m = C m = A m = 4e + − 2e 4e + Câu 69 Khối đa diện loại {3; 3} có tên gọi gì? A Khối 12 mặt B Khối bát diện C Khối lập phương D m = + 2e − 2e D Khối tứ diện [ = 60◦ , S O Câu 70 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ BC) √ √ Khoảng cách từ O đến (S √ a 57 2a 57 a 57 A a 57 C D B 19 17 19 Câu 71 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 72 Tổng diện tích mặt khối lập phương 54cm2 Thể tích khối lập phương là: A 72cm3 B 27cm3 C 46cm3 D 64cm3 Câu 73 Phát biểu sau sai? B lim √ = n C lim qn = với |q| > D lim k = với k > n Câu 74 là: √ √ Thể tích khối lăng trụ tam giác có cạnh √ 3 3 B C D A 12 4 Câu 75 Khối đa diện thuộc loại {5; 3} có đỉnh, cạnh, mặt? A 12 đỉnh, 30 cạnh, 20 mặt B 20 đỉnh, 30 cạnh, 12 mặt C 20 đỉnh, 30 cạnh, 20 mặt D 12 đỉnh, 30 cạnh, 12 mặt A lim un = c (Với un = c số) Câu 76 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m > C m ≥ D m ≤ 4 4 Câu 77 Dãy số sau có giới hạn khác 0? n+1 1 sin n A B √ C D n n n n Câu 78 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 79 [2-c] Cho a = log27 5, b = log8 7, c = log2 Khi log12 35 3b + 2ac 3b + 2ac 3b + 3ac 3b + 3ac A B C D c+3 c+2 c+1 c+2 Câu 80 [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x [0; 1] √ A m = ±3 B m = ± C m = ±1 D m = ± Trang 6/11 Mã đề Câu 81 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 √ Câu 82 [2] Phương trình log4 (x + 1)2 + = log √2 − x + log8 (4 + x)3 có tất nghiệm? A nghiệm B nghiệm C nghiệm D Vô nghiệm Câu 83 [1] Đạo hàm làm số y = log x 1 A y0 = B C y0 = x ln 10 10 ln x x x x Câu 84 [2] Tổng nghiệm phương trình 6.4 − 13.6 + 6.9 x = A B C D y0 = ln 10 x D Câu 85 Cho z nghiệm phương trình x2 + x + = Tính P =√z4 + 2z3 − z √ −1 + i −1 − i A P = 2i B P = C P = D P = 2 Câu 86 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ơng ta muốn hồn nợ cho ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp cách tháng, số tiền hồn nợ tháng ơng A trả hết nợ sau năm kể từ ngày vay Biết tháng ngân hàng tính lãi số dư nợ thực tế tháng Hỏi số tiền tháng ông ta cần trả cho ngân hàng gần với số tiền ? A 2, 22 triệu đồng B 2, 20 triệu đồng C 3, 03 triệu đồng D 2, 25 triệu đồng Câu 87 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a C f (x) có giới hạn hữu hạn x → a D lim+ f (x) = lim− f (x) = a x→a x→a Câu 88 [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ơng muốn hồn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng khơng đổi thời gian ơng A hồn nợ (1, 01)3 120.(1, 12)3 triệu B m = triệu A m = (1, 12)3 − (1, 01)3 − 100.(1, 01)3 100.1, 03 C m = triệu D m = triệu 3 Câu 89 Một khối lăng trụ tam giác chia thành khối tứ diện tích nhau? A B C D Câu 90 [1231d] Hàm số f (x) xác định, liên tục R có đạo hàm f (x) = |x − 1| Biết f (0) = Tính f (2) + f (4)? A 12 B 11 C D 10 Câu 91 Giá trị lim(2x2 − 3x + 1) x→1 A B C +∞ D Câu 93 [1] Giá trị biểu thức 9log3 12 A 24 B 144 C D π Câu 92 Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại điểm x = , x = π Tính giá √ trị biểu thức T = a + b √ √ A T = B T = 3 + C T = D T = Trang 7/11 Mã đề Câu 94 Khối đa diện thuộc loại {4; 3} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt !2x−1 !2−x 3 ≤ Câu 95 Tập số x thỏa mãn 5 A [1; +∞) B (−∞; 1] C (+∞; −∞) D [3; +∞) Câu 96 Trong không gian, cho tam giác ABC có đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) hình chiếu B, C lên cạnh! AC, AB Tọa độ hình chiếu ! A lên BC ! ; 0; C ; 0; D ; 0; A (2; 0; 0) B 3 log 2x Câu 97 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x − ln 2x A y0 = B y0 = C y0 = x ln 10 x 2x3 ln 10 2n + Câu 98 Tìm giới hạn lim n+1 A B C !x 1−x Câu 99 [2] Tổng nghiệm phương trình = + A − log2 B − log3 C log2 D y0 = 2x3 ln 10 D D − log2 Câu 100 Hàm số y = 2x + 3x + nghịch biến khoảng (hoặc khoảng) đây? A (−∞; 0) (1; +∞) B (−1; 0) C (0; 1) D (−∞; −1) (0; +∞) Câu 101 Khối đa diện loại {3; 4} có tên gọi gì? A Khối 12 mặt B Khối bát diện C Khối tứ diện D Khối lập phương Câu 102 [2-c] Giá trị nhỏ hàm số y = (x2 − 2)e2x đoạn [−1; 2] A −2e2 B −e2 C 2e2 D 2e4 √ √ 4n2 + − n + Câu 103 Tính lim 2n − 3 D A +∞ B C ln2 x m Câu 104 [3] Biết giá trị lớn hàm số y = đoạn [1; e3 ] M = n , n, m x e số tự nhiên Tính S = m2 + 2n3 A S = 22 B S = 135 C S = 32 D S = 24 Câu 105 Xác định phần ảo số phức z = (2 + 3i)(2 − 3i) A B 13 C D Không tồn x2 Câu 106 Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x đoạn [−1; 1] Khi e 1 A M = , m = B M = e, m = C M = e, m = D M = e, m = e e Câu 107 Cho z1 , z2 hai nghiệm phương trình z2 + 3z + = Tính P = z1 z2 (z1 + z2 ) A P = −21 B P = 10 C P = 21 D P = −10 Câu 108 Khẳng định sau đúng? A Hình lăng trụ đứng có đáy đa giác hình lăng trụ B Hình lăng trụ có đáy đa giác hình lăng trụ C Hình lăng trụ đứng hình lăng trụ D Hình lăng trụ tứ giác hình lập phương Trang 8/11 Mã đề Câu 109 [1] Phương trình log3 (1 − x) = có nghiệm A x = B x = −8 C x = −2 D x = −5 Câu 110 Khối đa diện loại {5; 3} có số đỉnh A 20 B 30 D C 12 Câu 111 Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) (S AC) vng góc với (S BC) √ √ Thể tích khối chóp S 3.ABC √ √ a a a3 a3 A B C D 12 12 Câu 112 [3-12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 113 Cho hình chóp S ABC Gọi M trung điểm S A Mặt phẳng BMC chia hình chóp S ABC thành A Một hình chóp tam giác hình chóp tứ giác B Hai hình chóp tam giác C Hai hình chóp tứ giác D Một hình chóp tứ giác hình chóp ngũ giác Câu 114 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = B y(−2) = C y(−2) = −18 D y(−2) = 22 Câu 115 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 116 [4-c] Xét số thực dương x, y thỏa mãn x + 2y = Khi đó, giá trị lớn biểu thức P = (2x2 + y)(2y2 + x) + 9xy 27 A B 18 C 12 D 27 x−1 y z+1 Câu 117 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình = = −1 mặt phẳng (P) : 2x − y + 2z − = Viết phương trình mặt phẳng (Q) chứa ∆ tạo với (P) góc nhỏ A 2x + y − z = B 2x − y + 2z − = C 10x − 7y + 13z + = D −x + 6y + 4z + = log7 16 Câu 118 [1-c] Giá trị biểu thức 15 log7 15 − log7 30 A B −2 C D −4 Câu 119 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 12 năm B 14 năm C 11 năm D 10 năm Trang 9/11 Mã đề 1 1 Câu 120 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C 2 Câu 121 Hình lập phương có mặt phẳng đối xứng? A mặt B mặt C mặt ! D D mặt Câu 122 [3-1121d] Sắp sách Toán sách Vật Lý lên kệ dài Tính xác suất để hai sách môn nằm cạnh B C D A 5 10 10 Câu 123 Khối đa diện loại {3; 5} có số cạnh A 30 B 12 C D 20 Câu 124 Cho hình chóp S ABCD có đáy ABCD hình thang vng A D; AD = CD = a; AB = 2a; tam giác√S AB nằm mặt Thể tích khối chóp S ABCD √ √ phẳng vng góc với 3(ABCD) 3 √ a a a A B C D a3 Câu 125 √cạnh a √ √ √ Thể tích tứ diện a3 a3 a3 a3 B C D A 12 Câu 126 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 127 Giá √ √ √ trị cực đại hàm số√y = x − 3x − 3x + B + C −3 + D −3 − A − √ Câu 128 Thể tích khối lập phương có cạnh a √ √ √ 2a3 A 2a3 B V = a3 C D V = 2a3 Câu 129 [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + Tìm giá trị tham số m để hàm số nghịch biến R A (−∞; −2] ∪ [−1; +∞) B −2 ≤ m ≤ −1 C −2 < m < −1 D (−∞; −2) ∪ (−1; +∞) x+3 Câu 130 [2D1-3] Có giá trị nguyên tham số m để hàm số y = nghịch biến khoảng x−m (0; +∞)? A B C D Vô số - - - - - - - - - - HẾT- - - - - - - - - - Trang 10/11 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A A D C D B D A C 10 A 11 D 12 13 D 14 A 15 D 16 D C 17 B 18 D 19 B 20 D 21 22 C 23 A 25 C 27 A C 24 D 26 D 28 A 29 30 C 31 A C 33 35 A 32 C 34 C 36 C 37 B 38 39 B 40 A 41 D 42 43 A B B B 44 A 45 46 C B 47 D 48 A 49 D 50 B 52 B 54 B 51 A 53 B 55 D 56 A 57 A 59 D 61 C 63 A 65 B 67 A 58 B 60 B 62 C 64 C 66 C 68 A 69 D 70 B 71 D 72 B C 73 75 B 77 A 79 D 78 D B C 84 86 A B 87 A 88 89 B 90 A C D 91 93 D 82 A 83 A 85 76 80 C 81 C 74 D 92 B 94 A 95 A 96 C 97 A 98 C 99 A 100 B B 101 B 102 103 B 104 105 106 C 107 A 109 B 108 A B 110 A 111 A 113 C 112 B 114 B 115 A 116 C B 117 C 118 119 C 120 C 122 C 121 D 123 A 125 124 A 126 B 127 129 D 128 A C 130 A B C