Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho ∫ 1 0 xe2xdx = ae2 + b, trong đó a, b là các số hữu tỷ Tính a + b A 1 2 B 1 C 0 D 1 4 Câu 2 Khối đa di[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút Mã đề thi Z Câu Cho xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b B A Câu Khối đa diện loại {3; 4} có tên gọi gì? A Khối 12 mặt B Khối bát diện Câu Tính lim A +∞ cos n + sin n n2 + B Câu Khối đa diện loại {3; 3} có số mặt A B C D C Khối lập phương D Khối tứ diện C D −∞ C D Câu Cho hàm số y = x3 − 2x2 + x + Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) ! C Hàm số nghịch biến khoảng ; ! B Hàm số đồng biến khoảng ; ! D Hàm số nghịch biến khoảng −∞; √ Câu [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C Vô số D 63 Câu Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ a3 a3 a3 B C a D A Câu Cho hình chữ nhật ABCD, cạnh AB = 4, AD = Gọi M, N trung điểm cạnh AB CD Cho hình chữ nhật quay quanh MN ta hình trụ trịn xoay tích A 8π B V = 4π C 32π D 16π a Câu [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = + , với a, b ∈ Z Giá trị a + b b ln A B C D Câu 10 Khối đa diện thuộc loại {5; 3} có đỉnh, cạnh, mặt? A 20 đỉnh, 30 cạnh, 12 mặt B 20 đỉnh, 30 cạnh, 20 mặt C 12 đỉnh, 30 cạnh, 20 mặt D 12 đỉnh, 30 cạnh, 12 mặt Câu 11 Cho hình chóp S ABCD √ có đáy ABCD hình vng cạnh a Hai mặt phẳng (S AB) (S AD) vng góc với đáy, S C = a √3 Thể tích khối chóp S ABCD √ a3 a3 a3 3 A B C a D 3 Câu 12 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn hoàn nợ cho ngân hàng theo cách: Sau tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ tháng ông A trả hết nợ sau năm kể từ ngày vay Biết tháng ngân hàng tính lãi số dư nợ thực tế tháng Hỏi số tiền tháng ông ta cần trả cho ngân hàng gần với số tiền ? A 3, 03 triệu đồng B 2, 22 triệu đồng C 2, 25 triệu đồng D 2, 20 triệu đồng Trang 1/10 Mã đề Câu 13 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln B ln 14 C ln 12 D ln 10 Câu 14 [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất không thay đổi? A 18 tháng B 16 tháng C 17 tháng D 15 tháng Câu 15 Nếu khơng sử dụng thêm điểm khác ngồi đỉnh hình lập phương chia hình lập phương thành A Năm tứ diện B Bốn tứ diện hình chóp tam giác C Một tứ diện bốn hình chóp tam giác D Năm hình chóp tam giác đều, khơng có tứ diện Câu 16 Tập xác định hàm số f (x) = −x3 + 3x2 − A (1; 2) B (−∞; +∞) C [1; 2] D [−1; 2) Câu 17 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 4) C (2; 4; 6) D (2; 4; 3) Câu 18 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab B √ C √ D √ A 2 a +b a2 + b2 a2 + b2 a2 + b2 Câu 19 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 20 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (I) C Chỉ có (II) D Cả hai câu sai Câu 21 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 2a 5a 8a A B C D 9 9 Câu 22 [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = Tìm giá trị lớn |z| A B C D Trang 2/10 Mã đề Câu 23.! Dãy số sau có giới !n hạn 0? n A B e !n C !n D − Câu 24 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 25 [2-c] Giá trị lớn hàm số f (x) = e x −3x+3 đoạn [0; 2] A e3 B e2 C e5 D e Câu 26 [4] Cho lăng trụ ABC.A0 B0C có chiều cao đáy tam giác cạnh Gọi M, N P tâm mặt bên ABB0 A0 , ACC A0 , BCC B0 Thể tích khối đa diện lồi có đỉnh A, B, C, M, N, P √ √ √ √ 14 20 B C D A 3 Câu 27 [2-c] Giá trị lớn hàm số y = x(2 − ln x) đoạn [2; 3] A − ln B C −2 + ln D e ! 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D 2 x−3 Câu 29 [1] Tính lim bằng? x→3 x + A B C +∞ D −∞ Câu 30 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất không thay đổi? A 102.424.000 B 102.423.000 C 102.016.000 D 102.016.000 3a Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a B C D A 3 4 Câu 32 [2] Cho hàm số f (x) = ln(x + 1) Giá trị f (1) ln A B C D 2 Câu 33 Khối đa diện loại {5; 3} có số cạnh A 12 B C 30 D 20 Câu 34 Xác định phần ảo số phức z = (2 + 3i)(2 − 3i) A B C 13 D Không tồn Câu 35 Nhị thập diện (20 mặt đều) thuộc loại A {5; 3} B {4; 3} C {3; 5} D {3; 4} Trang 3/10 Mã đề Câu 36 Tứ diện có mặt phẳng đối xứng? A mặt B mặt C 10 mặt D mặt Câu 37 Phép đối xứng qua mp(P) biến đường thẳng d thành A d ⊥ P B d nằm P d ⊥ P C d nằm P D d song song với (P) √ Câu 38 Thể tích khối lập phương có cạnh a √ √ √ 2a A V = 2a3 B C 2a3 D V = a3 π Câu 39 Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại điểm x = , x = π Tính giá √ trị biểu √ thức T = a + b √ A T = B T = C T = 3 + D T = Câu 40 Cho hàm số y = −x3 + 3x2 − Mệnh đề đúng? A Hàm số đồng biến khoảng (0; +∞) B Hàm số nghịch biến khoảng (0; 2) C Hàm số nghịch biến khoảng (−∞; 2) D Hàm số đồng biến khoảng (0; 2) Câu 41 Khối đa diện loại {3; 5} có số mặt A 30 B 12 C Câu 42 Khối đa diện loại {5; 3} có số đỉnh A 12 B √ D 20 C 30 D 20 √ − − 3i √l √ B Phần thực √2 − 1, phần ảo √3 D Phần thực 2, phần ảo − Câu 43 Phần thực √ phần ảo số phức √ z= A Phần thực 1√− 2, phần ảo − √3 C Phần thực − 1, phần ảo − √ Câu 44 Xác định phần ảo số √ phức z = ( + 3i)2 C A −7 B −6 √ D Câu 45 Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận tháng người phải trả cho ngân hàng triệu đồng trả tháng hết nợ (tháng cuối trả triệu) Hỏi sau tháng người trả hết nợ ngân hàng A 24 B 23 C 22 D 21 Câu 46 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≤ C m ≥ D m < A m > 4 4 Câu 47 Khối đa diện loại {3; 4} có số mặt A B C 10 D 12 Câu 48 Cho khối chóp có đáy n−giác Mệnh đề sau đúng? A Số đỉnh khối chóp 2n + B Số mặt khối chóp 2n+1 C Số cạnh khối chóp 2n D Số mặt khối chóp số cạnh khối chóp Câu 49 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A 2n3 lần B 2n2 lần C n3 lần D n3 lần Câu 50 Khi tăng ba kích thước khối hộp chữ nhật lên n lần thể thích tăng lên A n2 lần B n3 lần C 3n3 lần D n lần Trang 4/10 Mã đề Câu 51 [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ơng muốn hồn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng khơng đổi thời gian ơng A hồn nợ 120.(1, 12)3 100.1, 03 triệu B m = triệu A m = (1, 12)3 − (1, 01)3 100.(1, 01)3 C m = triệu D m = triệu (1, 01)3 − Trong khẳng định sau đây, khẳng định đúng? Câu 52 [3-12217d] Cho hàm số y = ln x+1 y y A xy = e − B xy = e + C xy0 = −ey + D xy0 = −ey − Câu 53 Cho z1 , z2 hai nghiệm phương trình z2 + 3z + = Tính P = z1 z2 (z1 + z2 ) A P = −21 B P = −10 C P = 21 D P = 10 2n + Câu 54 Tính giới hạn lim 3n + 2 A B C D 2 Câu 55 Khối đa diện có số đỉnh, cạnh, mặt nhất? A Khối lăng trụ tam giác B Khối bát diện C Khối lập phương D Khối tứ diện ln x p Câu 56 Gọi F(x) nguyên hàm hàm y = ln x + mà F(1) = Giá trị F (e) là: x 1 8 A B C D 9 Z Câu 57 Cho hàm số f (x) liên tục đoạn [0; 1] thỏa mãn f (x) = 6x f (x )− √ Tính f (x)dx 3x + A B x2 +x−2 Câu 58 [1] Tập xác định hàm số y = A D = (−2; 1) B D = R \ {1; 2} Câu 59 Khối đa diện loại {4; 3} có số đỉnh A B 10 C D −1 C D = [2; 1] D D = R C D Câu 60 [4-1214h] Cho khối lăng trụ ABC.A0 B0C , khoảng cách từ C đến đường thẳng BB0 2, khoảng √ cách từ A đến đường thẳng BB0 CC √ 3, hình chiếu vng góc A lên mặt phẳng (A0 B0C ) trung điểm M B0C A0 M = Thể tích khối lăng trụ cho √ √ A B C D Câu 61 Bát diện thuộc loại A {5; 3} B {4; 3} C {3; 3} D {3; 4} Câu 62 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = Trang 5/10 Mã đề Câu 63 [3-c] Cho < x < 64 Tìm giá trị lớn f (x) = log42 x + 12 log22 x log2 A 82 B 96 Câu 64 Dãy số sau có giới hạn khác 0? sin n A √ B n n C 81 C n D 64 D x n+1 n Câu 65 Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có vơ số B Có C Có hai D Khơng có Câu 66 [2-c] Cho a = log27 5, b = log8 7, c = log2 Khi log12 35 3b + 3ac 3b + 2ac 3b + 3ac B C A c+1 c+2 c+2 D 3b + 2ac c+3 Câu 67 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x2 y = x 11 A B C D 2 Z ln(x + 1) Câu 68 Cho dx = a ln + b ln 3, (a, b ∈ Q) Tính P = a + 4b x2 A B C −3 D Câu 69 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 70 Khối đa diện sau có mặt khơng phải tam giác đều? A Tứ diện B Bát diện C Nhị thập diện D Thập nhị diện q Câu 71 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 1] C m ∈ [0; 2] D m ∈ [0; 4] Câu 72 [2] Đạo hàm hàm số y = x ln x A y0 = x + ln x B y0 = + ln x C y0 = − ln x D y0 = ln x − Câu 73 Khối chóp ngũ giác có số cạnh A 12 cạnh B 10 cạnh C cạnh D 11 cạnh Câu 74 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 75 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D ( f (x) − g(x))dx = f (x)dx − g(x)dx Trang 6/10 Mã đề Câu 76 [1] Cho a > 0, a , Giá trị biểu thức log a1 a2 1 A B − C 2 Câu 77 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C Câu 78 [1] Giá trị biểu thức 9log3 12 A B C 144 log2 240 log2 15 Câu 79 [1-c] Giá trị biểu thức − + log2 log3,75 log60 A B −8 C D −2 D D 24 D Câu 80 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất khơng thay đổi người khơng rút tiền ra? A 11 năm B 14 năm C 12 năm D 10 năm Câu 81 [4-1121h] Cho hình chóp S ABCD đáy ABCD hình vng, biết AB = a, ∠S AD = 90◦ tam giác S AB tam giác Gọi Dt đường thẳng qua D song song với S C Gọi I giao điểm Dt mặt phẳng (S AB) Thiết diện hình chóp S ABCD với√mặt phẳng (AIC) có diện√tích √ 11a2 a2 a2 a B C D A 32 16 Câu 82 Phần thực phần ảo số phức z = −i + A Phần thực −1, phần ảo B Phần thực 4, phần ảo C Phần thực −1, phần ảo −4 D Phần thực 4, phần ảo −1 Câu 83 [2]√Tìm m để giá trị lớn hàm số y = 2x3 + (m2√+ 1)2 x [0; 1] A m = ± B m = ±3 C m = ± D m = ±1 Câu 84 [3-1122h] Cho hình lăng trụ ABC.A0 B0C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a BC Khi thể tích khối lăng trụ √ √ √ √ a3 a3 a3 a3 A B C D 12 36 24 Câu 85 Cho hàm số y = |3 cos x − sin x + 8| với x ∈ [0; 2π] Gọi M, m giá trị lớn nhất, giá trị nhỏ √ hàm số Khi tổng M + m √ √ A B 16 C D √ √ 4n2 + − n + Câu 86 Tính lim 2n − 3 A B C +∞ D Câu 87 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 abc b2 + c2 c a2 + b2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 88 có nghĩa √ Biểu thức sau không −3 −1 A −1 B (−1) √ C (− 2)0 D 0−1 Trang 7/10 Mã đề Câu 89 [12213d] Có giá trị nguyên m để phương trình nhất? A B Câu 90 √ Tìm giá trị lớn của√hàm số y = A B √ C √ x+3+ 6−x C 3|x−1| = 3m − có nghiệm D D + √ Câu 91 [2] Cho hàm số f (x) = x x Giá trị f (0) D f (0) = ln 10 ln 10 Câu 92 [4-1244d] Trong tất số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − + 5i| = |z − i| Biết rằng, |z + − i| nhỏ Tính P = ab 23 13 A B − C − D 25 100 16 100 Câu 93 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a S A ⊥ (ABCD) Mặt bên (S CD) hợp với √ đáy góc 60◦ Thể tích khối chóp S ABCD √ √ 3 √ a 2a a3 B a3 C D A 2mx + 1 Câu 94 Giá trị lớn hàm số y = đoạn [2; 3] − m nhận giá trị m−x A B −2 C D −5 4x + Câu 95 [1] Tính lim bằng? x→−∞ x + A B −4 C −1 D A f (0) = B f (0) = 10 C f (0) = Câu 96 Cho hình chóp S ABC có đáy ABC tam giác vng cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ 3 a a a3 a3 A B C D 24 24 48 Câu 97 [1] Cho a số thực dương tùy ý khác Mệnh đề đúng? 1 A log2 a = loga B log2 a = C log2 a = − loga D log2 a = loga log2 a 2x + Câu 98 Tính giới hạn lim x→+∞ x + 1 A B −1 C D √ Câu 99 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ √ cho √ √ πa3 πa3 πa3 πa3 A V = B V = C V = D V = 6 Câu 100 [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = z1 thỏa mãn |z1 − − i| = Diện tích hình phẳng giới hạn hai quỹ tích biểu diễn hai số phức z z1 gần giá trị nhất? A 0, B 0, C 0, D 0, Câu 101 Cho số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = Tìm giá trị nhỏ P = xy + x + 2y + 17 A −9 B −12 C −15 D −5 Câu 102 [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + Tìm giá trị tham số m để hàm số nghịch biến R A (−∞; −2) ∪ (−1; +∞) B (−∞; −2] ∪ [−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1 Trang 8/10 Mã đề Câu 103 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a A a B C D Câu 104 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = Câu 105 √ Cho số phức z thỏa mãn |z + 3| = |z − 2i| = |z −√2 − 2i| Tính |z| A |z| = 17 B |z| = 17 C |z| = 10 D |z| = 10 Câu 106 Ba kích thước hình hộp chữ nhật làm thành cấp số nhân có cơng bội Thể tích hình hộp cho 1728 Khi đó, kích thước hình hộp √ √ A 8, 16, 32 B 6, 12, 24 C 2, 4, D 3, 3, 38 Câu 107 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 3, triệu đồng B 70, 128 triệu đồng C 20, 128 triệu đồng D 50, triệu đồng Câu 108 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ D √ B √ C a +b a2 + b2 a2 + b2 a2 + b2 Câu 109 Khối đa diện loại {4; 3} có tên gọi gì? A Khối 12 mặt B Khối lập phương C Khối bát diện D Khối tứ diện Câu 110 Tổng diện tích mặt khối lập phương 96cm2 Thể tích khối lập phương là: A 84cm3 B 91cm3 C 48cm3 D 64cm3 9t , với m tham số thực Gọi S tập tất giá trị m Câu 111 [4] Xét hàm số f (t) = t + m2 cho f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A B C D Vô số Câu 112 [4-c] Xét số thực dương x, y thỏa mãn x + 2y = Khi đó, giá trị lớn biểu thức P = (2x2 + y)(2y2 + x) + 9xy 27 A 18 B 12 C D 27 Câu 113 Khối đa diện loại {3; 4} có số cạnh A 12 B C 10 D Câu 114 Khối đa diện thuộc loại {3; 4} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu 115 Tính lim A n−1 n2 + B C D Câu 116 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp đơi thể tích khối hộp tương ứng sẽ: A Tăng gấp lần B Tăng gấp lần C Tăng gấp đôi D Tăng gấp lần Trang 9/10 Mã đề Câu 117 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối √ √ √ chóp S ABMN √ a 4a3 5a3 2a B C D A 3 Câu 118 Cho hình √ chóp S ABCD có đáy ABCD hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD),√S D = a Thể tích khối chóp S ABCD √ √ √ a3 15 a3 a3 B a D A C 3 Câu 119 Khối lăng trụ tam giác có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu 120 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 160 cm2 B 120 cm2 C 160 cm2 D 1200 cm2 x+3 Câu 121 [2D1-3] Có giá trị nguyên tham số m để hàm số y = nghịch biến khoảng x−m (0; +∞)? A B Vô số C D √ Câu 122 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 38 3a 58 B C D A 29 29 29 29 Câu 123 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z f (x)dx = f (x) B Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 124 Tính lim x→1 A −∞ x3 − x−1 B C D +∞ Câu 125 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ [ = 60◦ , S A ⊥ (ABCD) Câu 126 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết rằng√ khoảng cách từ A đến cạnh S C a Thể tích khối√chóp S ABCD √ √ a3 a3 a3 A B a C D 12 ! ! ! 2016 4x Câu 127 [3] Cho hàm số f (x) = x Tính tổng T = f +f + ··· + f +2 2017 2017 2017 2016 A T = 1008 B T = C T = 2016 D T = 2017 2017 9x Câu 128 [2-c] Cho hàm số f (x) = x với x ∈ R hai số a, b thỏa mãn a + b = Tính f (a) + f (b) +3 A B C D −1 Trang 10/10 Mã đề Câu 129 [2-c] Giá trị lớn M giá trị nhỏ m hàm số y = x2 − ln x [e−1 ; e] A M = e−2 − 2; m = B M = e−2 + 2; m = C M = e−2 + 1; m = D M = e2 − 2; m = e−2 + Câu 130 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = e + C xy0 = −ey − D xy0 = −ey + - - - - - - - - - - HẾT- - - - - - - - - - Trang 11/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B C B D A D 10 A C 11 A 12 B 13 14 B 15 C 16 B 17 C D B 19 D 20 A 21 D 22 A 23 C 24 A 25 C 18 28 D 27 C 26 D 29 A 30 A 31 32 A 33 C 34 A 35 C 36 B 38 37 C B B 39 D D 40 D 41 42 D 43 C 44 D 45 C 46 B 48 50 47 A C B 49 C 51 C 52 A 53 A 54 A 55 D 56 D 57 58 D 59 D 61 D 60 B 62 A 64 D 63 C 65 C C 66 C 67 68 C 69 C B 70 72 D 71 A 73 B 74 A B 75 A 76 77 D 78 79 C 80 A D B 81 A 82 D 83 84 A 85 C B 86 D 87 A 88 D 89 D 91 D 90 A 92 93 A B 94 A 95 A 96 A 97 98 D 102 106 101 D C 104 B C 105 C 107 C D 109 110 D 111 112 A D 117 B C 122 A 126 C 115 118 A 124 B 113 A 114 120 B 103 108 116 C 99 C 100 B D D 121 D 123 D 127 A 128 A 129 A 130 A B 119 125 C D B