Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 90◦ C 30◦ D 45◦ Câu Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu Tích tất nghiệm phương trình ln2 x + ln x − = D A −3 B −2 C e12 e3 Câu Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (6; 7) C (−6; 7) D (7; 6) Câu Cho số phức z = + 9i, phần thực số phức z2 A −77 B C 85 D 36 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx C 43 D A B 32 Câu Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d = R C d = D d < R Câu Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 76 C 64 D 48 Câu 10 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (1; −4) B (−3; 0) C (0; −3) D (−1; −4) Câu 11 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A H(−2; −1; 3) B J(−3; 2; 7) C I(−1; −2; 3) D K(3; 0; 15) Câu 12 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A B C a D 2a 2 Câu 13 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (−∞; 3) B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho nghịch biến khoảng (3; +∞) Trang 1/4 Mã đề 001 Câu 14 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −8 C −2 D −4 √ √ a Tính góc Câu 15 Cho hình chóp S ABCD có cạnh đáy a đường cao S H mặt bên (S DC) mặt đáy A 90o B 30o C 45o D 60o − → Câu 16 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 45 B 30 C 60◦ D 90◦ Câu 17 Giả sử ta dùng màu để tô cho nước khác đồ khơng có màu dùng hai lần Số cách để chọn màu cần dùng là: 5! 5! A 53 B C D 2! 3!2! Câu 18 Hệ số x2 khai triển (2x − 3)4 là: A 216 B −16 C −216 D 16 Câu 19 Từ Hà Nội bay vào Đà Nẵng có chuyến bay trực tiếp ba hãng máy bay Hãng thứ cung cấp chuyến bay ngày Hãng thứ hai cung cấp chuyến bay ngày Hãng thứ ba cung cấp chuyến bay ngày Hỏi ngày có cách bay trực tiếp từ Hà Nội vào Đà Nẵng? A 12 cách B 16 cách C cách D cách Câu 20 Có ngựa chạy đua Hỏi có kết xảy ra? Biết khơng có hai ngựa vể đích lúc A C52 B 5! C A25 D 2! Câu 21 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (2; −3), ⃗b = (−2; 5) Toạ độ vectơ −⃗a + 3⃗b là: A (8; 18) B (−8; −18) C (8; −18) D (−8; 18) Câu 22 Cho α góc tạo hai đường thẳng ∆1 : 2x − 3y + = ∆2 : 3x + y − 14 = Giá trị cosa là: √ −3 −3 3 D A √ B √ C 130 130 130 130 Câu 23 Có cách xếp sách Văn khác sách Toán khác kệ sách dài sách Văn phải xếp kề nhau? A 5!.7! B 2.5!.7! C 12! D 5!.8! Câu 24 Đường thẳng ∆ có vectơ phương − u→(12; −13) Vectơ sau vectơ pháp tuyến ∆? A − n→∆ (13; 12) ∆ B − n→∆ (−13; 12) C − n→∆ (12; 13) D − n→∆ (−12; −13) Câu 25 Trong mặt phẳng toạ độ Oxy, cặp vectơ sau có phương? B = (1; −1) = (3; 3) A ⃗a = (− ; 2) ⃗b = (2; −6) √3 √ C ⃗c = ( 2; 2) d⃗ = (2; 2) D ⃗u = (2; 1) ⃗v = (2; −6) Câu 26 Số nghiệm phương trình x + 5.3 x − = A B C D p Câu 27 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Trang 2/4 Mã đề 001 đúng? x B Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu 28 Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R Câu 29 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 300 C 450 D 600 Câu 30 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B πR3 C 2πR3 D 6πR3 Câu 31 Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B loga x > loga y C log x > log y a D log x > log y a Câu 32 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 33 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = + B y = +1− ln 5 ln ln x x − D y = −1+ C y = ln ln 5 ln ln Câu 34 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 9 A ; B 0; C ; +∞ D ; 4 4 Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ B P = 26 C P = D P = 34 + A P = + √ Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 √ 2 Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = 13 B T = 13 C T = D T = 3 √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| > B |z| < C ≤ |z| ≤ D < |z| < 2 2 Trang 3/4 Mã đề 001 Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 2)2 D P = (|z| − 4)2 Câu 43 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 44 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(−5; −2) B M(5; 2) C M(5; −2) D M(−2; 5) Câu 45 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(1; −2) B M(−2; −4) C x = D x = −2 Câu 46 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B −4 C D 2i Câu 47 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A −x + 2y + 2z + = B x + 2y + 2z + = C x − 2y − 2z − = D 3x − 4y + 6z + 34 = Câu 48 Đường cong hình bên đồ thị hàm số đây? A y = x4 − 2x2 + B y = −x4 + 2x2 + C y = x3 − 3x2 + D y = −x3 + 3x2 + Câu 49 Biết R3 A −2 f (x)dx = R3 B g(x)dx = Khi R3 [ f (x) + g(x)]dx C D √ Câu 50 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x − 4)2 + (y + 8)2 = C (x − 4)2 + (y + 8)2 = 20 B (x + 4)2 + (y − 8)2 = 20 √ D (x + 4)2 + (y − 8)2 = - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001