Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16 343 < log7 x2−16 27[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Có số nguyên x thỏa mãn log3 A 92 B 186 x2 −16 x2 −16 343 27 < log7 C 184 ? D 193 Câu Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (1; 3) C (3; +∞) D (−∞; 1) Câu Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Câu Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ |z| Giá trị M + m2√bằng A 14 B 11 + √ C 18 + Câu Tập nghiệm bất phương trình x+1 < A (−∞; 1] B [1; +∞) C (−∞; 1) D 28 D (1; +∞) Câu Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 45◦ C 90◦ D 60◦ Câu Tích tất nghiệm phương trình ln2 x + ln x − = A −3 B e12 C e13 D −2 Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 48 B 76 C 56 D 64 Câu 10 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; 3) −n = (1; −2; −1) −n = (1; 3; −2) −n = (1; 2; 3) A → B → C → D → Câu 11 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B C −7 D −1 Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ A (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 B (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 C (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 D (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 Câu 13 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 55 220 14 Câu 14 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A P(4 ; −1 ; 3) B Q(4 ; ; 2) C N(1 ; ; 7) D M(0 ; ; 2) Trang 1/4 Mã đề 001 ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (0 ; −2) B (2 ; 0) C (3; ) D (0 ; 3) − → Câu 16 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 30 B 45 C 60◦ D 90◦ Câu 15 Cho hàm số y = Câu 17 Cho α góc tạo hai đường thẳng ∆1 : 2x − 3y + = ∆2 : 3x + y − 14 = Giá trị cosa là: √ −3 −3 3 A C B √ D √ 130 130 130 130 Câu 18 Giả sử ta dùng màu để tô cho nước khác đồ màu dùng hai lần Số cách để chọn màu cần dùng là: 5! 5! A B 53 C D 3!2! 2! Câu 19 Có cách xếp sách Văn khác sách Toán khác kệ sách dài sách Văn phải xếp kề nhau? A 5!.7! B 5!.8! C 12! D 2.5!.7! Câu 20 Phương trình tổng quát đường thẳng ∆ qua điểm M(x0 ; y0 ) có vectơ pháp tuyến ⃗n(a; b) là: A b(x − x0 ) − a(y − y0 ) = B a(x + x0 ) + b(y + y0 ) = x − x0 y − y0 C = D a(x − x0 ) + b(y − y0 ) = a b Câu 21 Trong mặt phẳng toạ độ Oxy, cho hai đường thẳng ∆1 : x − 2y + = 0, ∆2 : 3x − y + = Nhận định sau đúng? A Hai đường thẳng ∆1 ∆2 cắt B Hai đường thẳng ∆1 ∆2 song song với C Hai đường thẳng ∆1 ∆2 trùng D Hai đường thẳng ∆1 ∆2 vng góc với Câu 22 Tổng hệ số khai triển (x + 2)4 là: A 81 B 16 C 79 Câu 23 Khai triển (x + 1)4 là: A x4 + 5x3 + 10x2 + 5x + C x4 + 4x3 + 6x2 + 4x + D 14 B x4 + 3x3 + 4x2 + 3x + D x4 + 2x2 + Câu 24 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 10! 34! 10 A B C A10 D C34 34 10! (34 − 10)! Câu 25 Trong mặt phẳng toạ độ Oxy, toạ độ vectơ 2⃗i − 7⃗j là: A (2; −7) B (2; 7) C (−2; 7) D (−7; 2) Câu 26 Kết đúng? R sin3 x A sin2 x cos x = + C R sin3 x C sin2 x cos x = − + C m+2 ) m+1 R sin2 x cos x = cos2 x sin x + C D R sin2 x cos x = −cos2 x sin x + C Rm dx theo m? + 3x + m+1 m+2 B I = ln( ) C I = ln( ) m+2 2m + Câu 27 Cho số thực dươngm Tính I = A I = ln( B x2 D I = ln( 2m + ) m+2 Trang 2/4 Mã đề 001 Câu 28 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; 1; 2) C (2; −1; 2) D (−2; −1; 2) Câu R29 Công thức sai? A R cos x = sin x + C C a x = a x ln a + C R B R e x = e x + C D sin x = − cos x + C Câu 30 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ C m ≥ D m ∈ (−1; 2) A m ∈ (0; 2) B −1 < m < √ x Câu 31 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H4) C (H3) D (H1) Câu 32 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 20 (m) B S = 12 (m) C S = 24 (m) D S = 28 (m) Câu 33 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = + ln ln 5 ln x x C y = +1− D y = − ln ln 5 ln ln Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D √ Giá trị lớn biểu thức Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = √ điểm A hình vẽ bên điểm Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm M C điểm P D điểm N 2z − i Câu 38 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≤ B |A| > C |A| ≥ D |A| < Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm S C điểm R D điểm P √ √ √ 42 √ Câu 40 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Trang 3/4 Mã đề 001 Câu 41 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 √ 2 Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = R Câu 43 6x5 dxbằng A x6 + C B 30x4 + C C 6x6 + C D x6 + C Câu 44 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 96 B S = 364 C S = 84 D S = 1979 Câu 45 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (0; 2) B (−∞; −2) C (2; +∞) D (−2; 0) Câu 46 Tìm đạo hàm hàm số: y = (x + 1) 1 1 3 − 2 A (2x) B 3x(x + 1) C x D (x + 1) 2 Câu 47 Cho số phức z = (1 + i) (1 + 2i) Số phức z có phần ảo A B −4 C D 2i Câu 48 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(−2; −4) B x = −2 C x = D M(1; −2) Câu 49 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (2; −3; 4) −n = (2; 3; −4) −n = (−2; 3; 1) A → B → C → D → Câu 50 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 C −16 D A B 16 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001