Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 −[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B 10 C D Câu Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 3π C 2π D π z Câu Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác vuông B Tam giác OAB tam giác nhọn C Tam giác OAB tam giác cân D Tam giác OAB tam giác Câu Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = 27√− i hoặcw = 27 √ + i B w = + √ 27i hoặcw = −√ 27i D w = − 27 − i hoặcw = − 27 + i C w = + 27 hoặcw = − 27 Câu Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Hai đường thẳng B Đường tròn C Parabol D Một đường thẳng Câu Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D Câu Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 25π C 5π D Câu Cho hình chóp S ABC có đáy tam giác vuông B, S A vuông góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 60◦ B 30◦ C 90◦ D 45◦ Câu 10 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 60◦ C 30◦ D 45◦ Câu 11 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x = + 2t x=5+t y = −1 + t y = + 3t y = −1 + 3t y = + 2t A B C D z = −1 + t z = + 3t z = −1 + 3t z = −1 + t x2 − 16 x2 − 16 Câu 12 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 184 B 186 C 193 D 92 Câu 13 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d = R C d = D d < R Trang 1/4 Mã đề 001 Câu 14 Cho số phức z = + 9i, phần thực số phức z2 A −77 B 36 C D 85 Câu 15 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 B y′ = C y′ = − D y′ = A y′ = x xln3 xln3 x Câu 16 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ C y′ = πxπ−1 D y′ = xπ−1 π Câu 17 Xét tất cặp số nguyên dương (a; b), a ≥ b cho ứng với cặp số có 50 số nguyên dương x thỏa mãn ln a − ln x < ln b Hỏi tổng a + bnhỏ bao nhiêu? A 36 B 22 C 11 D 50 √ Câu 18 Cho hình trụ có chiều cao a Trên đường tròn đáy thứ hình trụ lấy hai điểm A, B, đường trịn đáy thứ hai hình trụ lấy hai điểm C, D cho ABCD hình vng mặt phẳng(ABCD) tạo với đáy hình góc 45◦ Thể tích√khối trụ cho √ trụ √ √ 2πa3 2πa3 B A 2πa3 · C D 2πa3 √ √ Câu 19 Cho hình chóp S ABC có đáy tam giác vuông A AB = 3, AC = 7, S A = Hai mặt bên (S AB) (S AC) tạo với đáy góc 450 600 Thể tích khối chóp cho √ √ 7 B C D A 6 2 Câu 20 Tập nghiệm bất phương trình log (2x + 1) ≥ log (x + 2) 4 1 C (−2; 1] D [− ; +∞] A [1; +∞) B (− ; 1] 2 ′ ′ Câu 21 Cho hàm số y = f (x) có f (2) = Đặt g(x) = f (x + 1), giá trị g (1) A 12 B C D Câu 22 Cắt hình nón √ mặt phẳng qua trục ta thiết diện tam giác vng cân có cạnh huyền a Thể tích khối √ nón √ √ √ 3 πa πa πa3 πa3 B V = C V = D V = A V = √ Câu 23 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a Cạnh bên S A = a vng góc với đáy (ABCD) Diện tích mặt√cầu ngoại tiếp hình chóp D 2πa2 C 4πa2 A 8πa2 B πa2 ′ ′ ′ Câu cân A ,AB = a,AA′ = √ 24 Cho hình lăng trụ đứng ABC.A B C có đáy ABC tam giác vuông a Gọi M trung điểm BC Khoảng cách hai đường thẳng AM B′C √ √ √ a 2a 3a A B 2a C D 2 ′ Câu 25 Cho hàm số y = f (x) có đạo hàm R f (x) = (x − 1)(x + 2) với x Số giá trị nguyên m cho hàm số y = f ( 2x3 + 3x2 − 12x − m ) có 11 điểm cực trị A 24 B 27 C 26 D 23 Câu 26 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = C yCD = 36 D yCD = 52 Câu 27 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A < m < B m < C m < D Không tồn m 3 Trang 2/4 Mã đề 001 Câu 28 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 29 Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = −x4 + 2x2 + C y = −x4 + D y = x4 + Câu 30 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = Câu 31 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD √ có chiều cao chiều√cao tứ diện √ √ 2π 2.a2 π 2.a2 π 3.a2 A π 3.a B C D 3 Câu 32 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π B V = C V = D V = A V = 5 Câu 33 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − m2 − 12 4m2 − A B C D m 2m 2m 2m Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm R Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 97 85 B T = C T = 13 A T = D T = 13 3 Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 4)2 Câu 38 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = C P = −2016 D P = Câu 39 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 40 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Trang 3/4 Mã đề 001 Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 15 C D A 10 Câu 42 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D Câu 43 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (0; 2) B (−∞; −2) C (2; +∞) D (−2; 0) Câu 44 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x ln x B y′ = 2023 x C y′ = x.2023 x−1 Câu 45 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (0; 1) C (1; +∞) D y′ = 2023 x ln 2023 D (−1; 0) Câu 46 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; 2) B M(5; −2) C M(−2; 5) D M(−5; −2) Câu 47 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x + 2y + 2z + = B x − 2y − 2z − = C 3x − 4y + 6z + 34 = D −x + 2y + 2z + = Câu 48 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(1; −2) B x = C x = −2 D M(−2; −4) Câu 49 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (−∞; 3] C (−∞; −3] ∪ [3; +∞) D (0; 3] Câu 50 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 27 6 27 27 B z = + i C z = − i D z = − + i A z = − − i 5 5 5 5 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001