Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho khối lăng trụ đứng ABC A′B′C′ có đáy ABC là tam giác vuông câ[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho khối lăng trụ đứng ABC · A B C √có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 22 a3 B 42 a3 C 2a3 D 62 a3 ′ ′ ′ Câu Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (7; 6) C (−6; 7) D (7; −6) Câu Có cặp số nguyên (x; y) thỏa mãn log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 89 B 48 C 90 D 49 Câu Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n3 = (1; 1; 1) C → n1 = (−1; 1; 1) D → n4 = (1; 1; −1) Câu Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho C 32 πrl2 D πrl A 2πrl B 31 πr2 l Câu Tập nghiệm bất phương trình log(x − 2) > A (−∞; 3) B (2; 3) C (12; +∞) D (3; +∞) Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 11 B C 12 D Câu Phần ảo số phức z = − 3i A B C −2 D −3 Câu Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −6 C −8 D −4 Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) tiếp xúc mặt cầu (S ) B (P) cắt mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) không cắt mặt cầu (S ) Câu 11 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 50 B 60 C 30 D 40 Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A J(−3; 2; 7) B H(−2; −1; 3) C I(−1; −2; 3) D K(3; 0; 15) Trang 1/4 Mã đề 001 Câu 13 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −192 B −384 C 192 D 384 Câu 14 Tập nghiệm bất phương trình 52x+3 > −1 A (−∞; −3) B R C ∅ D (−3; +∞) Câu 15 Đường thẳng y = tiệm cận ngang đồ thị đây? 2x − −2x + 1+x B y = C y = D y = A y = x+1 x+2 x−2 − 2x Câu 16 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2022 B 2019 C 2021 D 2020 Câu 17 Cho α góc tạo hai đường thẳng ∆1 : 2x − 3y + = ∆2 : 3x + y − 14 = Giá trị cosa là: √ −3 −3 3 A √ B C √ D 130 130 130 130 Câu 18 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (2; −3), ⃗b = (−2; 5) Toạ độ vectơ −⃗a + 3⃗b là: A (8; 18) B (−8; −18) C (−8; 18) D (8; −18) Câu 19 Ví dụ sau ví dụ hốn vị? A Số cách xếp hàng bạn nhóm 10 bạn B Số cách chọn bạn nhóm 10 bạn C Số cách xếp hàng theo hàng dọc 10 bạn D Số cách chia 10 bạn vào hai nhóm Câu 20 Từ Hà Nội bay vào Đà Nẵng có chuyến bay trực tiếp ba hãng máy bay Hãng thứ cung cấp chuyến bay ngày Hãng thứ hai cung cấp chuyến bay ngày Hãng thứ ba cung cấp chuyến bay ngày Hỏi ngày có cách bay trực tiếp từ Hà Nội vào Đà Nẵng? A cách B 12 cách C cách D 16 cách Câu 21 Giả sử ta dùng màu để tô cho nước khác đồ khơng có màu dùng hai lần Số cách để chọn màu cần dùng là: 5! 5! B C 53 D A 3!2! 2! Câu 22 Hệ số x khai triển (2x + 1) là: A 10 B C D 32 − → Câu 23 Đường thẳng ∆ có vectơ phương u (12; −13) Vectơ sau vectơ pháp tuyến ∆? A − n→∆ (−13; 12) ∆ B − n→∆ (−12; −13) C − n→∆ (13; 12) D − n→∆ (12; 13) Câu 24 Lớp 10 A có 21 bạn nam 18 bạn nữ Hỏi có cách chọn học sinh làm lớp trưởng? A 158 cách B 39 cách C 29 cách D 168 cách − → Câu 25 Đường thẳng ∆ có vectơ phương u (12; −13) Vectơ sau vectơ pháp tuyến ∆? A − n→∆ (−13; 12) ∆ B − n→∆ (−12; −13) C − n→∆ (12; 13) D − n→∆ (13; 12) Câu 26 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B m ∈ (−1; 2) C −1 < m < D m ≥ Câu 27 Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B ln x > ln y C log x > log y D log x > log y a a Trang 2/4 Mã đề 001 đúng? x B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu 28 Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số nghịch biến (0; +∞) Câu 29 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≥ C m ≤ D m > Câu 30 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = [ 0; +∞) D S = (−∞; ln3) m R dx Câu 31 Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+2 2m + m+1 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+1 2m + m+2 m+2 Câu R32 Công thức sai? R A R a x = a x ln a + C B R cos x = sin x + C C sin x = − cos x + C D e x = e x + C Câu 33 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường elip C Đường tròn D Đường hypebol Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 85 97 A T = B T = C T = 13 D T = 13 3 Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ D P = A P = B P = C P = 2 Câu 36 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = −2016 C P = 2016 D P = Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = 34 + C P = + D P = A P = 26 √ Câu 38 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 A |z| > B ≤ |z| ≤ C |z| < D < |z| < 2 2 √ Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 4)2 C P = |z|2 − D P = (|z| − 2)2 Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Trang 3/4 Mã đề 001 + z + z2 Câu 42 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 43 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 44 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng ′ ′ ′ 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V √ khối lăng trụ ABC.A B C 3 √ a 2a B V = a3 C V = D V = 3a3 A V = 3 Câu 45 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B −1 ≤ m < C m > D m < −1 Câu 46 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = B S = C S = −5 D S = −6 Câu 47 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 1 209 A B C D 105 210 21 210 R3 Câu 48 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 26 32 C 10 D A B 3 2 Câu 49 Tâm I bán kính R mặt cầu (S ) : (x − 1) + (y + 2) + (z − 3) = là: A I(1; 2; 3); R = B I(−1; 2; −3); R = C I(1; 2; −3); R = D I(1; −2; 3); R = 3 Câu 50 Tìm đạo hàm hàm số: y = (x + 1) 1 1 − 3 A 3x(x2 + 1) B (2x) C x D (x2 + 1) - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001