Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ B 3 a C 2a D 22 a A a Câu R2 Cho hàm số f (x) = cos x + x Khẳng định đúng? R A f (x)dx = − sin x + x + C B f (x)dx = sin x + x2 + C R R 2 C f (x)dx = − sin x + x2 + C D f (x)dx = sin x + x2 + C Câu Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B C 15 D 17 Câu Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D R Câu Cho x dx = F(x) + C Khẳng định đúng? A F ′ (x) = − x12 C F ′ (x) = ln x D F ′ (x) = x22 B F ′ (x) = 1x Câu Có cặp số nguyên (x; y) thỏa mãn log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 49 B 89 C 90 D 48 Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn B 18 C 359 D 71 A 354 35 ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (2 ; 0) B (3; ) C (0 ; 3) D (0 ; −2) Câu Cho hàm số y = Câu 10 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 20 C 13 D 17 x−2 y x−1 Câu 11 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) 3 3 3 3 Câu 12 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Trang 1/4 Mã đề 001 Câu 13 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (3; +∞) B Hàm số cho đồng biến khoảng (1; 4) C Hàm số cho đồng biến khoảng (−∞; 3) D Hàm số cho nghịch biến khoảng (1; 4) Câu 14 Tập nghiệm bất phương trình 52x+3 > −1 A (−3; +∞) B R C (−∞; −3) D ∅ Câu 15 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −7 C D −1 R Câu 16 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x C f (x) = cos 3x D f (x) = − A f (x) = −3 cos 3x B f (x) = 3 Câu 17 Trong mặt phẳng toạ độ Oxy, cặp vectơ sau có phương? √ √ A ⃗c = ( 2; 2) d⃗ = (2; 2) B ⃗u = (2; 1) ⃗v = (2; −6) D = (1; −1) = (3; 3) C ⃗a = (− ; 2) ⃗b = (2; −6) Câu 18 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (1; 1) B − n→∆ (1; −1) C − n→∆ (−2; −1) D − n→∆ (2; −1) Câu 19 Giả sử có khai triển (1 − 2x)n = a0 + a1 x + a2 x2 + + an xn Tìm a4 biết a0 + a1 + a2 = 31 A −80 B 40 C −40 D 80 Câu 20 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (1; 2), ⃗b = (3; −3) Toạ độ vectơ ⃗c = 3⃗a − 2⃗b là: A (−3; 12) B (3; 12) C (9; 0) D (−3; 0) Câu 21 Một quán ăn phục vụ ăn vặt loại nước uống Hỏi bạn Mai có cách để gọi ăn loại nước uống? A cách B 10 cách C cách D cách Câu 22 Giả sử ta dùng màu để tô cho nước khác đồ khơng có màu dùng hai lần Số cách để chọn màu cần dùng là: 5! 5! C D 53 A B 2! 3!2! Câu 23 Có cách chọn hai học sinh từ nhóm gồm 10 học sinh? A C10 B A210 C 210 D 102 Câu 24 Đường thẳng ∆ có vectơ phương − u→(12; −13) Vectơ sau vectơ pháp tuyến ∆? A − n→∆ (−12; −13) ∆ B − n→∆ (−13; 12) Câu 25 Khai triển (x + 1)4 là: A x4 + 4x3 + 6x2 + 4x + C x4 + 2x2 + C − n→∆ (12; 13) D − n→∆ (13; 12) B x4 + 5x3 + 10x2 + 5x + D x4 + 3x3 + 4x2 + 3x + Câu 26 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≥ C m < D m ≤ √ x Câu 27 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H4) D (H1) Câu 28 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = +1− B y = − ln ln 5 ln ln x x C y = + D y = −1+ ln 5 ln ln Trang 2/4 Mã đề 001 x tập xác định Câu 29 Giá trị nhỏ hàm số y = x +1 1 A y = −1 B y = C y = − D y = R R R R 2 Câu 30 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (2; −1; 2) √ Câu 31 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành? π 10π A V = B V = π C V = D V = 3 Câu 32 Cho hai số thực a, bthỏa mãn nào√sau sai? √ √ √ √5 a > b > Kết luận √5 a b D a− < b− C a > b A e > e B a < b Câu 33 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 − 2x2 + 3x + C y = −x4 + 3x2 − D y = x3 Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = (|z| − 4)2 D P = |z|2 − √ 2 Mệnh đề Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ √ 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = 34 + C P = + D P = 26 Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp sau đây? ! ! ! 1 9 A 0; B ; C ; D ; +∞ 4 4 √ √ √ 42 √ Câu 39 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 40 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 Trang 3/4 Mã đề 001 Câu 42 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 43 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m < −1 C m > D −1 ≤ m < √ Câu 44 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: A (x − 4)2 + (y + 8)2 = 20 B (x + 4)2 + (y − 8)2 = 20 √ √ C (x + 4)2 + (y − 8)2 = D (x − 4)2 + (y + 8)2 = Câu 45 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (2; 3; −4) −n = (2; −3; 4) −n = (−2; 3; 4) A → B → C → D → Câu 46 Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? D q = ±1 A q = ±2 B q = ±4 C q = ± Câu 47 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (−1; 0) C (0; 1) D (1; +∞) π R4 Câu 48 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − A 16 π2 + 16π − 16 B 16 π2 + 15π C 16 π2 − D 16 R3 Câu 49 Biết F(x) = x nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 32 A R Câu 50 6x5 dxbằng A x6 + C B C 10 D 26 B 30x4 + C C 6x6 + C D x + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001