Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, mặt phẳng (P) x + y + z + 1 = 0 có một vec[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n3 = (1; 1; 1) C → n1 = (−1; 1; 1) D → n2 = (1; −1; 1) Câu Tích tất nghiệm phương trình ln2 x + ln x − = D A −2 B −3 C e12 Câu Cho số phức z = + 9i, phần thực số phức z2 A −77 B 36 C e3 D 85 Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 6a2 B ln 32 Câu Tiệm cận ngang đồ thị hàm số y = B y = − 31 A y = 23 C ln a 2x+1 3x−1 D ln 23 đường thẳng có phương trình: C y = 31 D y = − 23 Câu Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (1; 3) C (−∞; 1) D (3; +∞) Câu Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox A 169 B 16π C 16 D 16π 15 15 R4 R4 R4 Câu Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A −1 B C D Câu Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 30 B 50 C 40 D 60 Câu 10 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; −1) −n = (1; 2; 3) −n = (1; −2; 3) −n = (1; 3; −2) A → B → C → D → ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (0 ; −2) B (3; ) C (2 ; 0) D (0 ; 3) Câu 11 Cho hàm số y = Câu 12 Trong khơng gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) A (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 B (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 √ C (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 2 Câu 13 Cho hàm số f (x) = − x + (2m + 3)x − (m + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C D 16 Trang 1/4 Mã đề 001 Câu 14 Cho khối chóp S ABCD có đáy ABCD hình vuông với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 C 2a3 D A 6a3 B 3 2 Câu 15 Trên tập số phức, cho phương trình z + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D − → Câu 16 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 90 B 30 C 45◦ D 60◦ Câu 17 Đường thẳng ∆ có vectơ phương − u→(12; −13) Vectơ sau vectơ pháp tuyến ∆? A − n→∆ (13; 12) ∆ B − n→∆ (−13; 12) C − n→∆ (−12; −13) D − n→∆ (12; 13) Câu 18 Có cách xếp sách Văn khác sách Toán khác kệ sách dài sách Văn phải xếp kề nhau? A 5!.7! B 12! C 5!.8! D 2.5!.7! Câu 19 Cho α góc tạo hai đường thẳng ∆1 : 2x − 3y + = ∆2 : 3x + y − 14 = Giá trị cosa là: √ −3 −3 B C D √ A √ 130 130 130 130 Câu 20 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (2; −3), ⃗b = (−2; 5) Toạ độ vectơ −⃗a + 3⃗b là: A (−8; 18) B (−8; −18) C (8; −18) D (8; 18) Câu 21 Đội tuyển tốn có bạn nam bạn nữ Giáo viên phải chọn nhóm bốn bạn Hỏi giáo viên có cách chọn? 12! A A412 B C C12 D 12! 4! Câu 22 Trong mặt phẳng toạ độ Oxy, toạ độ vectơ 2⃗i − 7⃗j là: A (2; −7) B (2; 7) C (−2; 7) D (−7; 2) −−→ Câu 23 Trong mặt phẳng toạ độ Oxy, cho A(3; −2) Toạ độ vectơ OA là: A (2; −3) B (−3; 2) C (−2; 3) D (3; −2) Câu 24 Trong mặt phẳng toạ độ Oxy, cho hai đường thẳng ∆1 : x − 2y + = 0, ∆2 : 3x − y + = Nhận định sau đúng? A Hai đường thẳng ∆1 ∆2 vng góc với B Hai đường thẳng ∆1 ∆2 song song với C Hai đường thẳng ∆1 ∆2 trùng D Hai đường thẳng ∆1 ∆2 cắt −−→ −−→ Câu 25 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(0; −2), C(3; 3) Toạ độ vectơ 2AB − BC là: A (14; 12) B (−14; −12) C (10; 28) D (−10; −28) Câu 26 Hàm số sau đồng biến R? A y = x2 C y = tan x √ √ B y = x2 + x + − x2 − x + D y = x4 + 3x2 + x π π π Câu 27 Biết F(x) nguyên hàm hàm số f (x) = F( ) = Tìm F( ) √ cos2 x π ln π π ln π π ln π π ln π A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Trang 2/4 Mã đề 001 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(6; −17; 21) C C(6; 21; 21) D C(8; ; 19) Câu 29 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = −15 D m = 13 −u (2; −2; 1), kết luận sau đúng? Câu 30 Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ p Câu 31 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux = y = −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Câu 32 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; −1; 2) D (−2; 1; 2) , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π D A 3π B 3π C √ 3 2z − i Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| < B |A| ≤ C |A| > D |A| ≥ √ 2 Mệnh đề Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 33 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 z+1 Câu 37 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = 2 D D |z| = Câu 38 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm S Câu 39 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = −2016 C P = 2016 D P = Trang 3/4 Mã đề 001 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C D √ 2 Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 15 C D A 10 Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(2; −6; 4) B M(−2; −6; 4) C M(−2; 6; −4) D M(5; 5; 0) R Câu 44 6x5 dxbằng C 6x6 + C D x6 + C A 30x4 + C B x6 + C x+1 Câu 45 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = x = B y = −1 x = C y = x = −1 D y = x = Câu 46 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x − 2y − 2z − = B x + 2y + 2z + = C −x + 2y + 2z + = D 3x − 4y + 6z + 34 = Câu 47 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A −4 B C D 2i √ 2, OD = Câu 48 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = a D d = 2a Câu 49 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (2; −3; 4) −n = (2; 3; −4) −n = (−2; 3; 4) A → B → C → D → Câu 50 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001