Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hàm số y = f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+ x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 34 B 14 C 21 D 52 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx B C 43 D A 23 Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; −6) C (7; 6) D (6; 7) Câu Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−2; −4; −6) C (−1; −2; −3) D (2; 4; 6) Câu Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ |z| Giá trị M + m2√bằng √ C 11 + D 28 A 14 B 18 + Câu Cho số phức z = + 9i, phần thực số phức z2 A B 85 C −77 D 36 Câu Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D − → Câu Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − A 45◦ B 30◦ C 60◦ D 90◦ Câu 10 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = + t B x = + ty = tz = − t C x = + 2ty = 2tz = + t D x = − ty = tz = + t √ Câu 12 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 1; 3, 3)· B (3, 5; 3, 7)· C (3, 3; 3, 5)· D (3, 7; 3, 9)· Câu 13 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 60 B 40 C 30 D 50 Trang 1/4 Mã đề 001 Câu 14 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho 2a3 a3 D A 2a3 B 6a3 C 3 Câu 15 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho đồng biến khoảng (−∞; 3) D Hàm số cho nghịch biến khoảng (3; +∞) Câu 16 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A 3a B C D Câu 17 Số cách chia 10 học sinh thành ba nhóm có 2, 3, học sinh là: 2 A C10 + C10 + C10 B C10 + C83 + C55 C C10 · C83 · C55 D C10 + C53 + C22 Câu 18 Trong mặt phẳng toạ độ Oxy, cặp vectơ sau có phương? √ √ A ⃗c = ( 2; 2) d⃗ = (2; 2) B = (1; −1) = (3; 3) D ⃗u = (2; 1) ⃗v = (2; −6) C ⃗a = (− ; 2) ⃗b = (2; −6) Câu 19 Đội tuyển toán có bạn nam bạn nữ Giáo viên phải chọn nhóm bốn bạn Hỏi giáo viên có cách chọn? 12! A A412 B 12! C D C12 4! Câu 20 Đường thẳng ∆ có vectơ phương − u→∆ (12; −13) Vectơ sau vectơ pháp tuyến ∆? A − n→∆ (13; 12) B − n→∆ (12; 13) C − n→∆ (−12; −13) D − n→∆ (−13; 12) Câu 21 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (1; 2), ⃗b = (3; −3) Toạ độ vectơ ⃗c = 3⃗a − 2⃗b là: A (−3; 12) B (−3; 0) C (9; 0) D (3; 12) Câu 22 Hệ số x3 khai triển (2x + 1)4 là: A 10 B C 32 D Câu 23 Đường thẳng ∆ có vectơ phương − u→(12; −13) Vectơ sau vectơ pháp tuyến ∆? A − n→∆ (−12; −13) ∆ B − n→∆ (12; 13) C − n→∆ (−13; 12) D − n→∆ (13; 12) Câu 24 Có cách chọn hai học sinh từ nhóm gồm 10 học sinh? A 102 B C10 C A210 D 210 Câu 25 Một đường thẳng có vectơ pháp tuyến? A B C D Vô số ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 26 Cho hàm số y = cx + d A ad > B ac < C ab < D bc > Câu 27 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 28 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (0; 2) C −1 < m < D m ∈ (−1; 2) √ ′ ′ ′ ′ Câu 29 Cho lăng trụ ABC.A B C có đáy a, AA = 3a Thể tích khối √ √ lăng trụ cho là: A 3a3 B 3a3 C a3 D 3a3 Trang 2/4 Mã đề 001 Câu 30 Số nghiệm phương trình x + 5.3 x − = A B C D Câu 31 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C πR3 D 4πR3 Câu 32 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = C m = −15 D m = −2 + 2x Câu 33 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A −4 < m < B < m , C ∀m ∈ R D m < Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 B T = C T = D T = 13 A T = 13 3 Câu 35 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B z số ảo C Phần thực z số âm D |z| = Câu 36 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 2 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ B C D A √ 2 Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = + C P = 34 + D P = Câu 41 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2z − i Câu 42 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≥ C |A| < D |A| ≤ √ Câu 43 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x + 4)2 + (y − 8)2 = √5 B (x + 4)2 + (y − 8)2 = 20 C (x − 4)2 + (y + 8)2 = D (x − 4)2 + (y + 8)2 = 20 Trang 3/4 Mã đề 001 Câu 44 Với a số thực dương tùy ý, log5 (5a) A + log5 a B + log5 a C − log5 a D − log5 a Câu 45 Cần chọn người công tác từ tổ có 30 người, số cách chọn D 10 C C30 A 330 B A330 x+1 Câu 46 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = −1 x = B y = x = −1 C y = x = D y = x = Câu 47 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 96 B S = 364 C S = 84 D S = 1979 Câu 48 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 C V = 2a3 D V = 3a3 A V = a3 B V = Câu 49 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; −2) B M(−2; 5) C M(5; 2) D M(−5; −2) Câu R50 Tìm nguyên hàm hàm số f (x) = cos 3x R A cos 3xdx = sin 3x + C B cos 3xdx = sin 3x + C R R sin 3x sin 3x C cos 3xdx = + C D cos 3xdx = − + C 3 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001