Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π ln π π ln π π ln π π ln π B F( ) = + C F( ) = + D F( ) = − A F( ) = − 4 4 4 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > C m > 2e D m > e2 Câu Kết luận sau tính đơn điệu hàm số y = Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = (−∞; ln3) C S = [ -ln3; +∞) D S = [ 0; +∞) Câu Tính I = R1 √3 7x + 1dx 45 20 60 21 B I = C I = D I = 28 28 x Câu Số nghiệm phương trình x + 5.3 − = A B C D m R dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+1 m+2 m+2 2m + A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 2m + m+1 m+2 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = √ ′ ′ ′ ′ Câu 10 Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a B C D 2 Câu 11 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 12 4m2 − m2 − A B C D m 2m 2m 2m √ Câu 12 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (1; +∞) B (0; 1) C (0; ) D ( ; +∞) 4 A I = Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số nghịch biến khoảng (−∞; −3) C Hàm số đồng biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (−3; 1) Câu 14 Đạo hàm hàm số y = log √2 3x − là: 2 A y′ = C y′ = B y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 15 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = x4 + C y = −x4 + 2x2 + D y = x4 + 2x2 + Câu 16 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 17 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 100a3 C 60a3 D 30a3 Câu 18 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường hypebol C Đường elip D Đường tròn Câu 19 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = −x4 + 3x2 − C y = x3 D y = x2 − 2x + Câu 20 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B 3π A C 3π D √ 3 Câu 21 Cho√ hai số thực a, bthỏa mãn a > b > Kết luận sau sai? √ √ √ √5 √ 2 a b − − A a > b B e > e C a − 4π2 B Nếux = y = −3 C Nếux > thìy < −15 D Nếu < x < y < −3 Câu 26 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (−1; 1; 1) B (1; −2; −3) C (1; −1; 1) D (1; 1; 3) Trang 2/5 Mã đề 001 Câu 27 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 10 a 3a 13 A B C D 13 26 20 1 Câu 28 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m < B m > C m > m < D m > Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 30 Tập xác định hàm số y = logπ (3 x − 3) là: A [1; +∞) B (3; +∞) C (1; +∞) D Đáp án khác √ Câu 31 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vng cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ 2a3 a3 a3 3 B a D A C Câu 32 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình √ 2 2 2 A (x − 1) + (y + 1) + (z + 2) = B (x + 1) + (y − 1) + (z − 2) = C (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 D (x + 1)2 + (y − 1)2 + (z − 2)2 = (2 ln x + 3)3 : x (2 ln x + 3)4 (2 ln x + 3)2 ln x + (2 ln x + 3)4 A + C B + C C + C D + C 8 Câu 34 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D d Câu 35 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng √ (ABC) √ cách từ S đến mặt phẳng D a A 2a B a C a Câu 33 Họ nguyên hàm hàm số f (x) = Câu 36 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 cos x π Câu 37 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 3π 6π 6π A ln + B ln + C D ln + 5 5 Câu 38 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a 3a a 15 3a 30 A B C D 2 10 3x Câu 39 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm Trang 3/5 Mã đề 001 A m = −2 B Không tồn m C m = D m = Câu 40 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + n + B log2 2250 = A log2 2250 = n n 3mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Câu 41 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B m > −2 C −3 ≤ m ≤ D −4 ≤ m ≤ −1 Câu 42 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B 6π C D 5 Câu 44 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ A B C D Câu 45 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 46 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 a3 15 a3 15 a3 15 A B C D 16 Câu 49 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y C Nếu a > a x > ay ⇔ x < y D Nếu a < a x > ay ⇔ x < y Câu 50 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001