1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn khảo sát chất lượng thptqg môn toán (632)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,76 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Bất đẳng thức nào sau đây là đúng? A ( √ 3 +[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu 1.√ Bất đẳng thức √ esau đúng? π A ( + 1) > ( + 1) C 3−e > 2−e √ √ e π B ( − 1) < ( − 1) D 3π < 2π √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? 10π π D V = A V = B V = π C V = 3 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H1) C (H2) D (H3) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux > thìy < −15 C Nếu < x < π y > − 4π D Nếux = y = −3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 D C(20; 15; 7) A C(6; −17; 21) B C(6; 21; 21) C C(8; ; 19) + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B < m , C −4 < m < D ∀m ∈ R Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x2 − 2x + C y = x3 D y = x3 − 2x2 + 3x + Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (2; −1; 2) Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = 52 C yCD = −2 D yCD = 36 √ d = 1200 Gọi Câu 10 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a 15 a A B a 15 C D 3 Câu 11 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A < m < B −2 ≤ m ≤ C −2 < m < D m = Câu 12 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD √ có chiều cao chiều cao tứ diện √ √ tiếp √ π 3.a 2π 2.a2 π 2.a2 A B C π 3.a D 3 Trang 1/5 Mã đề 001 Câu 13 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π A V = B V = C V = D V = 5 Câu 14 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể√tích khối nón √ π.a3 4π 2.a3 π 2.a3 2π.a3 A B C D 3 3 Câu 15 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số nghịch biến khoảng (1; +∞) Câu 16 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(3; 7; 4) C C(1; 5; 3) D C(5; 9; 5) √ ′ Câu 17 Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA 3a Thể tích khối√lăng trụ cho là: √ = 3 D 3a3 A a B 3a C 3a Câu 18 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = [ 0; +∞) D S = (−∞; 2) Câu 19 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a 2a 3a a A C B √ D √ 5 Câu 20 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 300 B 450 C 360 D 600 Câu R21 Công thức sai? A e x = e x + C R C sin x = − cos x + C Câu 22 Kết đúng? R A sin2 x cos x = cos2 x sin x + C R sin3 x C sin2 x cos x = − + C R B cos x = sin x + C R D a x = a x ln a + C sin3 x + C B R sin2 x cos x = D R sin2 x cos x = −cos2 x sin x + C x π π π F( ) = √ Tìm F( ) cos x π π ln π π ln C F( ) = + D F( ) = − 4 Câu 23 Biết F(x) nguyên hàm hàm số f (x) = π π ln A F( ) = + 4 π π ln B F( ) = − 4 Câu 24 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C 4πR3 D πR3 Câu 25 Cho hai số thực a, bthỏa mãn a√> b > Kết luận sau sai? √ √ √ √5 √5 − A a < b B a < b− C ea > eb D a > b x2 + 2x Câu 26 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A −2 B C 15 D Trang 2/5 Mã đề 001 Câu 27 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga x có nghĩa với ∀x ∈ R B loga = a loga a = C loga (xy) = loga x.loga y D loga xn = log x , (x > 0, n , 0) an Câu 28 Cho R4 −1 A 18 f (x)dx = 10 R4 f (x)dx = Tính R1 f (x)dx −1 B −2 C D Câu 29 Nguyên hàm F(x) hàm số f (x) = 2x + x − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x B x3 − x4 + 2x C x3 + − 4x + D 2x3 − 4x4 4 Câu 30 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 11 B 33,2 C 2,075 D 8,9 Câu 31 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; 1; 3) B (1; −2; −3) C (−1; 1; 1) D (1; −1; 1) Câu 32 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 45.188.656 đồng B 46.538667 đồng C 48.621.980 đồng D 43.091.358 đồng Câu 33 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 B 3πa C D πa3 A πa 3 π cos x F(− ) = π Khi giá trị Câu 34 Biết hàm F(x) nguyên hàm hàm f (x) = sin x + cos x F(0) bằng: 3π 6π 6π 6π A ln + B ln + C D ln + 5 5 Câu 35 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = Câu 36 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 29 27 23 A B C D 4 4 √ Câu 37 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ (4; +∞) Câu 38 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; ′ AA′ =√2a Gọi α số đo góc √ hai đường thẳng AC DB Tính giá trị cos α.√ A B C D Câu 39 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 26abc C P = 2a+b+c D P = 2a+2b+3c Trang 3/5 Mã đề 001 Câu 40 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 41 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A 6π B C D 5 Câu 42 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 4a3 C 6a3 D 12a3 Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 29 23 27 B C D A 4 4 Câu 44 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = x3 − 3x2 D y = −2x4 + 4x2 d Câu 45 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B 2a C a D a Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 47 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D 3x Câu 49 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = C m = D m = −2 Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a a 15 3a 30 A B C D 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 07/04/2023, 09:23