Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cắt mặt trụ bởi một mặt phẳng tạo với trục củ[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường trịn C Đường hypebol D Đường parabol Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; −5; 0) C (0; 0; 5) D (0; 1; 0) Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 3a 5a 2a B √ C D A √ 5 π x π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π ln π π ln π π ln π π ln π B F( ) = − C F( ) = − D F( ) = + A F( ) = + 4 4 4 Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 24 (m) B S = 12 (m) C S = 28 (m) D S = 20 (m) Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B loga2 x = loga x C aloga x = x D loga x2 = 2loga x Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = sin x 3x + D y = tan x C y = x−1 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H1) C (H2) D (H4) Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 10 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln − B ln − C ln + D − ln 2 2 √ Câu 11 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng C Khơng có tiệm cận ngang có tiệm cận đứng D Khơng có tiệm cận Câu 12 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = C yCD = 52 D yCD = −2 Trang 1/5 Mã đề 001 √ x Câu 13 Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = Câu 14 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều√cao tứ diện √ tiếp √ π 3.a2 π 2.a2 2π 2.a B C D π 3.a2 A 3 ′′ Câu 15 Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −3 B f (−1) = C f (−1) = −1 D f (−1) = −5 Câu 16 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32 8π 32π B V = C V = D V = A V = 5 Câu 17 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 − 2x2 + 3x + C y = x D y = −x4 + 3x2 − Câu 18 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ a b2 − 3a2 a2 3b2 − a2 A VS ABC = B VS ABC = 12 √ 12 √ 3ab2 3a2 b C VS ABC = D VS ABC = 12 12 √ Câu 19 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành 10π π D V = A V = π B V = C V = 3 √ ′ ′ ′ Câu 20 lăng trụ ABC.A B C có đáy a, AA′ = 3a Thể tích khối lăng trụ cho là: √ √ Cho B 3a3 C 3a3 D a3 A 3a3 Câu 21 Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = cos x B y = x2 D y = x4 + 3x2 + Câu 22 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(8; ; 19) C C(6; −17; 21) D C(6; 21; 21) √ x Câu 23 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H1) C (H2) D (H3) Câu 24 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + ty = + 2tz = Câu 25 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 300 B 450 C 600 D 360 1 Câu 26 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m < C m > D m > m < Trang 2/5 Mã đề 001 Câu 27 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ mặt phẳng đáy Tính cơsin √ √ góc hai mặt phẳng (SAC) (SBC) bằng? A B C D 2 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ D 8π A 4π B 2π C 3π Câu 29 Đồ thị hàm số sau có điểm cực trị: A y = −x4 − 2x2 − B y = x4 − 2x2 − C y = x4 + 2x2 − D y = 2x4 + 4x2 + Câu 30 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 B C D A 24 12 √ Câu 31 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 2a3 a3 3 A D B C a 1 + + + ta được: Câu 32 Rút gọn biểu thức M = loga x loga2 x logak x 4k(k + 1) k(k + 1) k(k + 1) k(k + 1) A M = B M = C M = D M = loga x 2loga x loga x 3loga x Câu 33 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Câu 34 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox D m > m < −1 A m > B m > m < − C m < −2 Câu 35 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = + 2(ln a)2 C P = 2loga e D P = ln a cos x π Câu 36 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 3π 6π 6π 6π A ln + B ln + C D ln + 5 5 π R2 Câu 37 Biết sin 2xdx = ea Khi giá trị a là: A − ln B C ln D Câu 38 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ a 15 3a 3a 3a 30 A B C D 2 10 Câu 39 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx − (x2 − 2x)dx 1 Trang 3/5 Mã đề 001 B R3 C R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx |x2 − 2x|dx = − D R3 R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 40 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B −2 C −4 D Câu 41 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 400π 500π 250π 125π B C D A 9 Câu 42 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 2 C (x − 1) + (y + 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 44 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 45 Tìm tất giá trị tham số m để hàm số y = x − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = D m = m = −10 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (3; 14; 16) A u + v = (2; 14; 14) B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ √ 2x − x2 + có số đường tiệm cận đứng là: Câu 47 Đồ thị hàm số y = x2 − A B C D Câu 48 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 250π 500π 400π 125π A B C D 9 Câu 49 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln B y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001