Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tíc[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 3 D πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; −17; 21) B C(20; 15; 7) C C(8; ; 19) D C(6; 21; 21) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 6; 0) C (−2; 0; 0) D (0; 2; 0) Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = tan x B y = sin x 3x + C y = x3 − 2x2 + 3x + D y = x−1 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = −1 C y = D y = − R R R R 2 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≤ C m > D m ≥ √ Câu Cho lăng trụ ABC.A√′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: A 3a3 B 3a3 C a3 D 3a3 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 30a3 C 60a3 D 100a3 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ trung điểm cạnh CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng √ √ a 15 a a A B a 15 C D 3 Câu 10 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m ≥ D m > Câu 11 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(1; 0; 3) C A(0; 2; 3) D A(0; 0; 3) Câu 12 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể √ tích3 khối nón √ π 2.a 4π 2.a3 2π.a3 π.a A B C D 3 3 Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số đồng biến khoảng (−3; 1) Câu 14 Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = C T = 81 D T = Câu 15 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 A (m ) B 3(m2 ) C (m2 ) D (m ) Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu 17 Hàm số sau khơng có cực trị? A y = x2 C y = cos x B y = x3 − 6x2 + 12x − D y = x4 + 3x2 + Câu 18 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = + B y = +1− ln 5 ln ln x x C y = −1+ D y = − ln ln 5 ln ln x Câu 19 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = − B y = −1 C y = D y = R R R R 2 Câu 20 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 600 B 360 C 300 D 450 Câu 21 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 100a3 C 30a3 D 20a3 Câu 22 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D Câu 23 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = x3 − 2x2 + 3x + B y = x−1 C y = sin x D y = tan x Câu 24 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 20 (m) B S = 28 (m) C S = 24 (m) D S = 12 (m) Câu 25 Kết đúng? R sin3 x A sin2 x cos x = − + C R C sin2 x cos x = −cos2 x sin x + C sin3 x + C R D sin2 x cos x = cos2 x sin x + C B R sin2 x cos x = Trang 2/5 Mã đề 001 x −2x +3x+1 Câu 26 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) B Hàm số đồng biến khoảng (−∞; 1) (3; +∞) C Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) D Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) Câu 27 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 28 Đồ thị hàm số sau có điểm cực trị: A y = −x4 − 2x2 − B y = 2x4 + 4x2 + C y = x4 + 2x2 − D y = x4 − 2x2 − Câu 29 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (1; −2; 7) B (−2; 2; 6) C (4; −6; 8) D (−2; 3; 5) √ Câu 30 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 2a3 a3 3 A B a C D 3 Câu 31 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 a 3a 13 3a 10 B C D A 20 13 26 Câu 32 Đồ thị hình bên đồ thị hàm số nào? −2x + 2x − 2x + 2x + A y = B y = C y = D y = 1−x x−1 x+1 x+1 Câu 33 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 48.621.980 đồng B 46.538667 đồng C 43.091.358 đồng D 45.188.656 đồng Câu 34 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080254 đồng C 36080255 đồng D 36080253 đồng Câu 35 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C √ D − ≤ x − 4x + Tìm mệnh đề Câu 36 Cho bất phương trình A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ (4; +∞) D Bất phương trình vơ nghiệm 2(x−1)+1 x Câu 37 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A (2x + 1)2 dx = +C B x dx =5 x + C 2x R R e C e2x dx = + C D sin xdx = cos x + C Câu 38 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a 3a a 15 3a 30 A B C D 10 Trang 3/5 Mã đề 001 √ Câu 39 Tính đạo hàm hàm số y = log4 x2 − x x C y′ = A y′ = √ B y′ = 2(x − 1) ln (x − 1)log4 e x2 − ln r 3x + Câu 40 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) ———————————————– B D = (−∞; −1] ∪ (1; +∞) C D = (−∞; 0) D D = (1; +∞) D y′ = (x2 x − 1) ln Câu 41 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 9a3 C 6a3 D 3a3 A 4a3 Câu 42 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 43 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 44 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = + 2(ln a)2 C P = ln a D P = 2loga e Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 29 27 25 A B C D 4 4 √ 2x − x2 + Câu 46 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 47 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng B 36080253 đồng C 36080251 đồng D 36080254 đồng Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 11 17 10 16 21 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 50 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx Trang 4/5 Mã đề 001 C R3 |x2 − 2x|dx = − D R3 R2 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001