1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn khảo sát chất lượng thptqg môn toán (702)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,21 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 C y = −1 D y = − A y = B y = R R R R 2 Câu Một mặt cầu có diện tích 4πR thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 Câu Hàm số sau khơng có cực trị? A y = cos x B y = x4 + 3x2 + C y = x2 D y = x3 − 6x2 + 12x − Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −2 C m = D m = −15 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H4) C (H1) D (H3) Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x − B y = −1+ A y = ln ln 5 ln ln x x C y = + D y = +1− ln 5 ln ln Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = 21 C R = D R = Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu 10 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2) B [2; +∞) C (1; 2] √ sin 2x Câu 11 Giá trị lớn hàm số y = ( π) R bằng? A π B C D (−∞; 2] D √ π √ Câu 12 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; ) B (1; +∞) C ( ; +∞) D (0; 1) 4 Câu 13 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −1 C f (−1) = −3 D f (−1) = R Câu 14 Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B −3 sin 3x + C C sin 3x + C D sin 3x + C 3 Trang 1/5 Mã đề 001 Câu 15 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD √ có chiều cao chiều√cao tứ diện √ tiếp √ 2π 2.a2 π 2.a2 π 3.a B C D π 3.a2 A 3 Câu 16 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B C D − 6 Câu 17 Cho < a , 1; < x , Đẳng thức sau sai? A loga2 x = loga x B aloga x = x C loga (x − 2)2 = 2loga (x − 2) D loga x2 = 2loga x Câu 18 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; 2) C S = [ 0; +∞) D S = (−∞; ln3) Câu 19 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 600 B 300 C 450 D 360 Câu 20 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 20a3 C 100a3 D 30a3 Câu 21 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 20 (m) B S = 28 (m) C S = 24 (m) D S = 12 (m) Câu 22 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m ≥ e−2 B m > C m > e2 D m > 2e Câu 23 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; 3; 1) D M ′ (−2; −3; −1) Câu 24 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x + B y = +1− A y = ln 5 ln ln x x C y = −1+ D y = − ln ln 5 ln ln √ x Câu 25 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H4) C (H1) D (H3) Câu 26 Cho R4 f (x)dx = 10 −1 A 18 R4 B f (x)dx = Tính R1 f (x)dx −1 C −2 D Câu 27 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 10 3a 13 a 3a 13 A B C D 20 13 26 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 8π B 4π C 2π D 3π Trang 2/5 Mã đề 001 √3 a2 b ) Câu 29 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( c A B C − D 3 Câu 30 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 2a2 b 2a2 b 4a2 b B √ A √ C √ D √ 3π 3π 2π 2π Câu 31 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga (xy) = loga x.loga y B loga x có nghĩa với ∀x ∈ R n D loga = a loga a = C loga x = log x , (x > 0, n , 0) an Câu 32 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với mặt phẳng đáy Tính cơsin √ góc hai mặt phẳng √ (SAC) (SBC) bằng? √ 2 A B C D 2 Câu 33 Cho hàm số y = x −3x Tính y′ A y′ = (2x − 3)5 x −3x C y′ = (2x − 3)5 x −3x ln B y′ = x −3x ln D y′ = (x2 − 3x)5 x −3x ln −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 34 Trong khơng gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 35 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080253 đồng C 36080251 đồng D 36080255 đồng Câu 36 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 37 Chọn mệnh đề mệnh đề sau: R R e2x A e2x dx = + C B x dx =5 x + C R R (2x + 1)3 C (2x + 1)2 dx = +C D sin xdx = cos x + C r 3x + Câu 38 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (−1; 4) ———————————————– C D = (1; +∞) D D = (−∞; −1] ∪ (1; +∞) Câu 39 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m > −2 C m < D −3 ≤ m ≤ Câu 40 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y x y C Nếu a > a > a ⇔ x > y D Nếu a < a x > ay ⇔ x < y Trang 3/5 Mã đề 001 Câu 41 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A B 6π ln + 5 C π cos x F(− ) = π Khi giá trị sin x + cos x 3π ln + D ln + 6π Câu 42 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 125π 500π 400π A B C D 9 Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 44 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −2x4 + 4x2 C y = −x4 + 2x2 D y = x3 − 3x2 Câu 45 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 B C D A 10 Câu 46 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = 2loga e C P = + 2(ln a)2 D P = ln a Câu 47 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (3; 5) C (−1; 1) D (−3; 0) Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = 0 d Câu 49 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C 2a D a Câu 50 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 400π 500π 125π A B C D 9 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 06/04/2023, 14:10