Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S )[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B D 3π A √ C 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a a 5a 3a A √ C √ B D 5 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = x3 − 2x2 + 3x + B y = x−1 C y = sin x D y = tan x Câu R4 Công thức sai? A R cos x = sin x + C C e x = e x + C R B R sin x = − cos x + C D a x = a x ln a + C Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 4πR3 D 2πR3 Câu Hàm số sau khơng có cực trị? A y = x2 B y = x3 − 6x2 + 12x − C y = cos x D y = x4 + 3x2 + Rm dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+2 2m + m+1 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+2 m+1 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; 1; 2) C (−2; −1; 2) D (2; −1; −2) a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 450 B 600 C 300 D 1350 Câu 10 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD có chiều cao chiều√cao tứ diện √ √ tiếp √ π 3.a π 2.a2 2π 2.a2 A B π 3.a C D 3 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m = C m , D m , −1 Câu 12 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = −2 C yCD = D yCD = 36 Trang 1/5 Mã đề 001 Câu 13 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C π D −1 Câu 14 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln − C ln + D − ln A ln − 2 2 R Câu 15 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu 17 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x2 − 2x + C y = x D y = x3 − 2x2 + 3x + Câu 18 Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 2πR3 D 4πR3 Câu 19.√ Cho hai số thực a, bthỏa mãn a > b > Kết luận √ √ √5 sau sai? √2 √5 − a b − e C a < b D a > b A a Câu 20 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m > C m ≤ D m < Câu 21 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = − 4t B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = p Câu 22 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux > thìy < −15 C Nếu < x < y < −3 D Nếux = y = −3 −u (2; −2; 1), kết luận sau đúng? Câu 23 Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ √ Câu 24 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành π 10π A V = B V = C V = D V = π 3 Câu 25 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 1; 0) C (0; 5; 0) D (0; 0; 5) Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D Trang 2/5 Mã đề 001 Câu 27 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 Câu 28 Cho hàm số y = x −3x Tính y′ A y′ = x −3x ln C y′ = (2x − 3)5 x −3x ln B y′ = (x2 − 3x)5 x −3x ln D y′ = (2x − 3)5 x −3x Câu 29 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C 2 D x2 + 2x Câu 30 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B 15 C −2 D Câu 31 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 4a2 b 2a2 b A √ B √ C √ D √ 3π 3π 2π 2π √3 a2 b ) Câu 32 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( c A − B C D 3 Câu 33 Tập xác định hàm số y = logπ (3 x − 3) là: A (1; +∞) B Đáp án khác C (3; +∞) D [1; +∞) Câu 34 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 6π C 8π D 10π Câu 35 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 Câu 36 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080255 đồng C 36080251 đồng D 36080254 đồng Câu 37 Hàm số hàm số sau đồng biến R 4x + A y = B y = x3 + 3x2 + 6x − x+2 C y = x4 + 3x2 D y = −x3 − x2 − 5x Câu 38 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC a3 15 a3 a 15 a3 15 A B C D 16 Câu 39 Trong khơng gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = Trang 3/5 Mã đề 001 x2 Câu 40 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 1 1 A B C D 128 64 32 Câu 41 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −2x4 + 4x2 C y = x3 − 3x2 D y = −x4 + 2x2 + Câu 42 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRl + πR2 C S = πRl + 2πR2 D S = πRh + πR2 Câu 43 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 12a3 C 3a3 D 4a3 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 11 17 10 31 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 √ Câu 45 Tính đạo hàm hàm số y = log4 x2 − 1 x x B y′ = √ A y′ = C y′ = (x − 1) ln (x − 1)log4 e x2 − ln D y′ = A D = (−∞; 0) 3x + x−1 B D = (−∞; −1] ∪ (1; +∞) C D = (−1; 4) D D = (1; +∞) r Câu 46 Tìm tập xác định D hàm số y = 2(x2 x − 1) ln log2 Câu 47 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m > −2 C m < D −3 ≤ m ≤ Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 49 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−1; 1) C (−3; 0) D (3; 5) Câu 50 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D 2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001