Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có vô số đường tiệm[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = tan x x−1 C y = x − 2x + 3x + D y = sin x Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 20a3 C 100a3 D 30a3 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B loga x > loga y C log x > log y D log x > log y a a Câu 4.√ Cho √hai số thực a, bthỏa mãn a > b > Kết luận√nào sau√ sai? √5 √ A a > b B ea > eb C a− < b− D a < b đúng? x B Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số đồng biến R Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; 6; 0) C (0; −2; 0) D (0; 2; 0) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(6; −17; 21) C C(6; 21; 21) D C(8; ; 19) ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B ad > C ab < D bc > √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A B π C D π Câu 10 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 B − C D A 6 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(1; 1; 2) B I(0; 1; −2) C I(0; −1; 2) D I(0; 1; 2) Câu 12 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số nghịch biến khoảng (−∞; −3) C Hàm số đồng biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (−3; 1) Câu 14 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C −1 D π Câu 15 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = −2 C yCD = 36 D yCD = 52 Câu 16 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 17 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu R18 Công thức sai? A R sin x = − cos x + C C cos x = sin x + C R B R e x = e x + C D a x = a x ln a + C √ x Câu 19 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H2) C (H1) D (H3) Câu 20 Hàm số sau khơng có cực trị? A y = x2 C y = x3 − 6x2 + 12x − B y = cos x D y = x4 + 3x2 + p Câu 21 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Câu 22 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t x tập xác định Câu 23 Giá trị nhỏ hàm số y = x +1 1 A y = B y = −1 C y = D y = − R R R R 2 Câu 24 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x2 − 2x + C y = x3 D y = −x4 + 3x2 − Câu 25 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ 2 a b2 − 3a2 3ab A VS ABC = B VS ABC = 12 √ √ 12 3a b a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu 26 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 45.188.656 đồng B 48.621.980 đồng C 46.538667 đồng D 43.091.358 đồng Trang 2/5 Mã đề 001 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D Re lnn x Câu 28 Tính tích phân I = dx, (n > 1) x 1 1 A I = B I = C I = D I = n + n+1 n n−1 Câu 29 Đồ thị hình bên đồ thị hàm số nào? −2x + 2x + 2x − A y = B y = C y = 1−x x+1 x−1 D y = 2x + x+1 Câu 30 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 48m B 50m C 49m D 47m Câu 31 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ √ mặt phẳng đáy Tính cơsin góc hai mặt phẳng √ (SAC) (SBC) bằng? B C D A 2 Câu 32 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ h √ √ √ 2π − 3 2π − 3 π− A B C D 12 12 3x − ≤ là: Câu 33 Tập nghiệm bất phương trình log4 (3 x − 1).log 16 4 A S = (0; 1] ∪ [2; +∞) B S = (1; 2) C S = [1; 2] D S = (−∞; 1] ∪ [2; +∞) Câu 34 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 3a3 B 9a3 C 4a3 D 6a3 Câu 35 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a 30 3a 3a a 15 B C D A 10 Câu 36 Chọn mệnh đề mệnh đề sau: R3 R3 R2 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B C 1 R3 R2 |x − 2x|dx = (x − 2x)dx + 2 R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − D R3 1 |x − 2x|dx = − (x2 − 2x)dx (x2 − 2x)dx R2 (x − 2x)dx + R3 (x2 − 2x)dx Trang 3/5 Mã đề 001 r Câu 37 Tìm tập xác định D hàm số y = log2 3x + x−1 A D = (1; +∞) B D = (−1; 4) ———————————————– C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) Câu 38 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −x4 + 2x2 + C y = x3 − 3x2 D y = −2x4 + 4x2 Câu 39 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 Câu 40 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a 15 a 15 a 15 a A B C D 16 Câu 41 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 42 Chọn mệnh đề mệnh đề sau: R R e2x (2x + 1)3 +C B e2x dx = + C A (2x + 1)2 dx = R R C x dx =5 x + C D sin xdx = cos x + C √ 2x − x2 + có số đường tiệm cận đứng là: Câu 43 Đồ thị hàm số y = x2 − A B C D √ Câu 44 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình vơ nghiệm C Bất phương trình với x ∈ (4; +∞) D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = −1 + 2t x = − 2t x = + 2t y = −2 + 3t y = −2 + 3t y = −2 − 3t y = + 3t A B C D z = −4 − 5t z = + 5t z = − 5t z = − 5t −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 47 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−3; 0) C (3; 5) D (−1; 1) Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 10 16 11 17 10 31 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Trang 4/5 Mã đề 001 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 50 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = 2loga e C P = ln a D P = + 2(ln a)2 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001