Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có đáy bằng a, AA[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu 1.√Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: B a3 C 3a3 D 3a3 A 3a3 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+1 m+2 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+1 m+2 2m + Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (−1; 2) C m ∈ (0; 2) D −1 < m < Câu Kết đúng? R R sin3 x A sin2 x cos x = − + C B sin2 x cos x = cos2 x sin x + C R R sin3 x + C C sin2 x cos x = −cos2 x sin x + C D sin2 x cos x = Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m ≥ D m < Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 D C(6; 21; 21) A C(6; −17; 21) B C(20; 15; 7) C C(8; ; 19) R1 √3 Câu Tính I = 7x + 1dx 45 21 20 60 A I = B I = C I = D I = 28 28 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A (m2 ) B 3(m2 ) C (m2 ) D (m ) Câu 10 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A m < B < m < C Không tồn m D m < 3 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(1; 1; 2) C I(0; 1; 2) D I(0; 1; −2) √ x Câu 12 Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = Trang 1/5 Mã đề 001 √ Câu √ 13 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 300 C 450 D 1200 √ sin 2x Câu 14 Giá trị lớn hàm số y = ( π) R bằng? √ A B C π D π Câu 15 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32π 32 B V = C V = D V = A V = 3 Câu 16 Biết R5 A T = 81 dx = ln T Giá trị T là: 2x − √ B T = C T = D T = Câu 17 Số nghiệm phương trình x + 5.3 x − = A B C D x tập xác định Câu 18 Giá trị nhỏ hàm số y = x +1 1 A y = B y = C y = −1 D y = − R R R R 2 Câu 19 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x3 C y = −x4 + 3x2 − D y = x2 − 2x + Câu 20 Cho hai số thực a, bthỏa mãn a > b > Kết luận nào√sau sai? √ √ √ √5 √5 a b B e > e C a > b A a < b D a− < b− Câu 21 Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 4πR3 D 2πR3 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 22 Cho hàm số y = cx + d A ab < B ac < C ad > D bc > p Câu 23 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux = y = −3 C Nếu < x < y < −3 D Nếux > thìy < −15 π π π x Câu 24 Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = − D F( ) = + 4 4 4 Câu 25 Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga2 x = loga x C loga x2 = 2loga x D loga (x − 2)2 = 2loga (x − 2) Câu 26 Cho hàm số y = x −3x Tính y′ A y′ = (x2 − 3x)5 x −3x ln C y′ = (2x − 3)5 x −3x ln B y′ = (2x − 3)5 x −3x D y′ = x −3x ln Câu 27 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 48m B 47m C 50m D 49m Trang 2/5 Mã đề 001 x−3 y−6 z−1 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −1 −1 −3 x−1 y z−1 x y−1 z−1 = D = = C = −3 −1 −3 (2 ln x + 3)3 : Câu 29 Họ nguyên hàm hàm số f (x) = x (2 ln x + 3)4 ln x + (2 ln x + 3)2 (2 ln x + 3)4 A + C B + C C + C D + C 8 Câu 30 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 B C D A 12 24 x Câu 31 Họ nguyên hàm hàm số y = (x − 1)e là: A xe x−1 + C B (x − 1)e x + C C (x − 2)e x + C D xe x + C Câu 28 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : Câu 32 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Câu 33 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 34 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 35 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 36 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 37 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C −4 D x + mx + đạt cực tiểu điểm x = Câu 38 Tìm tất giá trị tham số m để hàm số y = x+1 A m = −1 B m = C m = D Khơng có m Câu 39 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 27 29 23 A B C D 4 4 cos x π Câu 40 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: Trang 3/5 Mã đề 001 A 6π B 3π ln + C ln + 6π D 6π ln + 5 3x Câu 41 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = C m = −2 D m = Câu 42 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080254 đồng C 36080253 đồng D 36080255 đồng Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 23 27 29 A B C D 4 4 Câu 44 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 3a 3a 30 A B C D 10 Câu 45 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = ln a C P = D P = + 2(ln a)2 Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A B 6π ln + 5 C π cos x F(− ) = π Khi giá trị sin x + cos x 3π ln + D ln + 6π Câu 47 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 48 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = C m = m = −16 D m = m = −10 Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 6π C 10π D 8π Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001