Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = − sin3x[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Kết đúng? R sin3 x + C A sin x cos x = − 3 R sin x C sin2 x cos x = + C B R sin2 x cos x = −cos2 x sin x + C D R sin2 x cos x = cos2 x sin x + C −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = B |→ C |→ D |→ A |→ ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B bc > C ab < D ad > Câu Cho hình√chóp S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: a2 3b2 − a2 3ab2 B VS ABC = A VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = sin x B y = x−1 C y = tan x D y = x3 − 2x2 + 3x + Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường parabol C Đường hypebol D Đường tròn đúng? x B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến (0; +∞) C Hàm số nghịch biến R Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A −1 < m < B m ∈ (−1; 2) C m ≥ D m ∈ (0; 2) Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu 10 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD có chiều cao chiều√cao tứ diện √ tiếp √ √ 2π 2.a π 3.a2 π 2.a2 A B π 3.a C D 3 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; −1; 2) C I(1; 1; 2) D I(0; 1; 2) Trang 1/5 Mã đề 001 Câu 12 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh√huyền 2a Tính thể tích khối nón √ 4π 2.a3 π.a3 2π.a3 π 2.a3 A B C D 3 3 Câu 13 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [22; +∞) B ( ; +∞) C ( ; 2] [22; +∞) D [ ; 2] [22; +∞) 4 Câu 14 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab) = ln a ln b B ln(ab2 ) = ln a + (ln b)2 ln a a C ln(ab2 ) = ln a + ln b D ln( ) = b ln b Câu 15 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A < m < B m < C Không tồn m D m < 3 Câu 16 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B π C D −1 −u (2; −2; 1), kết luận sau đúng? Câu 17 Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Câu 18 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a 3a 5a a B √ C D A √ 5 Câu 19 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A 3π B C 3π D √ 3 Câu 20 Cho a > 1; < x < y Bất đẳng thức sau đúng? C loga x > loga y A ln x > ln y B log x > log y a D log x > log y a Câu 21 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 0; 5) C (0; 1; 0) D (0; −5; 0) Câu R22 Công thức sai? A R a x = a x ln a + C C e x = e x + C R B R sin x = − cos x + C D cos x = sin x + C x Câu 23 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = − B y = C y = −1 D y = R R R R 2 Câu 24 Hàm số sau cực trị? A y = x2 C y = x3 − 6x2 + 12x − B y = x4 + 3x2 + D y = cos x Trang 2/5 Mã đề 001 Câu 25 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 20a3 C 100a3 D 30a3 Câu 26 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc MN mặt phẳng √ (ABCD) 60 Tính √ sin góc MN và√mặt phẳng (S BD) 10 B C D A 5 Câu 27 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 28 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung nhất, S √ quanh diện tích mặt đáy nhỏ C 106, 25dm2 D 125dm2 A 75dm2 B 50 5dm2 Câu 29 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π π 3π 3π A V = B V = C V = D V = Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D Câu 31 Đồ thị hình bên đồ thị hàm số nào? 2x − 2x + 2x + A y = B y = C y = x−1 x+1 x+1 R4 R4 R1 Câu 32 Cho f (x)dx = 10 f (x)dx = Tính f (x)dx −1 A 18 B D y = −2x + 1−x −1 C −2 D Câu 33 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 48.621.980 đồng B 43.091.358 đồng C 45.188.656 đồng D 46.538667 đồng Câu 34 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −10 C m = D m = m = −16 Câu 35 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Câu 36 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 500π 125π 400π 250π B C D A 9 Câu 37 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 2a+b+c C P = 26abc D P = 2a+2b+3c d Câu 38 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng √ cách từ S đến mặt phẳng (ABC) A a B a C a D 2a Trang 3/5 Mã đề 001 3x Câu 39 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B Không tồn m C m = D m = Câu 40 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = √ 2x − x2 + Câu 41 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D √ Câu 42 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình với x ∈ (4; +∞) Câu 43 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 12π C 6π D 8π Câu 44 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−3; 0) C (−1; 1) D (1; 5) Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 27 29 23 B C D A 4 4 Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 47 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 48 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A (2x + 1)2 dx = + C B sin xdx = cos x + C 2x R R e C e2x dx = +C D x dx =5 x + C √ Câu 49 Tính đạo hàm hàm số y = log4 x2 − 1 x x x ′ ′ A y′ = √ B y′ = C y = D y = 2(x2 − 1) ln (x2 − 1) ln (x2 − 1)log4 e x2 − ln Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 a3 15 A B C D 16 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001