Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = cos2x si[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Kết đúng? R R sin3 x A sin2 x cos x = cos2 x sin x + C B sin2 x cos x = − + C R R sin3 x + C D sin2 x cos x = −cos2 x sin x + C C sin2 x cos x = Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = [ -ln3; +∞) C S = (−∞; 2) D S = (−∞; ln3) Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a a 3a 2a A B √ C D √ 5 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (2; −1; 2) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếu < x < π y > − 4π2 C Nếux = y = −3 D Nếux > thìy < −15 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 6πR3 C 4πR3 D πR3 Câu Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh √ 2 A 2πRl B π l − R C πRl D 2π l2 − R2 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C −6 D √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C a D 2 log √a Câu 10 Cho a > a , Giá bằng? √ trị a A B C D Câu 11 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m ≥ C m ≥ D m > Câu 12 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 3π C 4π D 2π Câu 13 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Trang 1/5 Mã đề 001 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(5; 9; 5) B C(−3; 1; 1) C C(1; 5; 3) D C(3; 7; 4) ; y = 0; x = 0; x = Câu 15 Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B ln + C ln − D − ln − 2 2 Câu 16 Cho hàm số y = x + 3x − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (−∞; −3) Câu 17 Hàm số sau khơng có cực trị? A y = x4 + 3x2 + C y = x3 − 6x2 + 12x − B y = x2 D y = cos x Câu 18 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 1; 0) C (0; −5; 0) D (0; 5; 0) Câu 19 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 28 (m) B S = 24 (m) C S = 12 (m) D S = 20 (m) → − Câu 20 Trong không gian với hệ tọa độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = −u | = −u | = −u | = √3 D |→ A |→ B |→ C |→ đúng? x B Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) Câu 21 Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) R1 √3 Câu 22 Tính I = 7x + 1dx 45 A I = 28 B I = 60 28 C I = 20 D I = 21 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A √ B C 3π D 3π 3 Câu 24 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường tròn C Đường parabol D Đường hypebol Câu 23 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu 25 Hàm số sau đồng biến R? A y = x2 C y = x4 + 3x2 + √ √ B y = x2 + x + − x2 − x + D y = tan x Câu 26 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga xn = log x , (x > 0, n , 0) B loga = a loga a = an C loga x có nghĩa với ∀x ∈ R D loga (xy) = loga x.loga y Câu 27 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 4π B 8π C 2π D 3π Trang 2/5 Mã đề 001 Câu 28 Đồ thị hàm số sau có điểm cực trị: A y = x4 − 2x2 − B y = x4 + 2x2 − C y = −x4 − 2x2 − D y = 2x4 + 4x2 + Re lnn x Câu 29 Tính tích phân I = dx, (n > 1) x 1 1 B I = n + C I = D I = A I = n−1 n+1 n x Câu 30 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m ≥ −8 B m ≤ C m < −3 D m ≤ −2 Câu 31 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng √ (ABCD) 60 Tính sin góc MN và√mặt phẳng (S BD) 10 B C D A 5 x −2x +3x+1 Câu 32 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) B Hàm số đồng biến khoảng (−∞; 1) (3; +∞) C Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) D Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) Câu 33 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 45.188.656 đồng B 48.621.980 đồng C 43.091.358 đồng D 46.538667 đồng Câu 34 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 35 Hàm số hàm số sau đồng biến R 4x + B y = x4 + 3x2 A y = x+2 C y = x3 + 3x2 + 6x − D y = −x3 − x2 − 5x Câu 36 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 √ Câu 37 Tính đạo hàm hàm số y = log4 x2 − x x x ′ ′ D y = A y′ = B y′ = C y = √ (x − 1)log4 e 2(x2 − 1) ln (x2 − 1) ln x2 − ln Câu 38 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ A R = B R = 15 C R = 14 D R = Câu 39 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (3; 5) C (−3; 0) D (1; 5) d Câu 40 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ cạnh BC, S A = S C √ B a C 2a D a A a → − → − Câu 41 Trong không gian với hệ trục tọa độ Oxyz cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ véc −u + 3→ −v tơ 2→ → − −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) A u + 3→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Trang 3/5 Mã đề 001 Câu 42 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = −1 + 2t x = + 2t x = + 2t x = − 2t y = + 3t y = −2 − 3t y = −2 + 3t y = −2 + 3t A B C D z = −4 − 5t z = − 5t z = − 5t z = + 5t Câu 43 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox C m > m < −1 D m < −2 A m > m < − B m > √ Câu 44 Tính đạo hàm hàm số y = log4 x2 − A y′ = √ x2 − ln B y′ = 2(x2 x − 1) ln C y′ = (x2 x − 1) ln D y′ = (x2 x − 1)log4 e Câu 45 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−1; 1) C (1; 5) D (−3; 0) Câu 46 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 47 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D 2 Câu 48 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 a 15 3a 3a A B C D 10 2 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + m 2mn + n + C log2 2250 = n A log2 2250 = 3mn + n + n 2mn + n + D log2 2250 = n B log2 2250 = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001