Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCcó cạnh đáy bằng a và[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình chóp S ABCcó cạnh đáy a cạnh bên tích khối chóp là: q b Thể √ √ a2 b2 − 3a2 3a b A VS ABC = B VS ABC = √ 12 √12 3ab a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số đồng biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến (0; +∞) Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > C m ≥ e−2 D m > 2e Câu Hàm số sau đồng biến R? A y = x4 + 3x2 + C y = tan x √ √ B y = x2 + x + − x2 − x + D y = x2 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x2 − 2x + C y = −x4 + 3x2 − D y = x3 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x − B y = + A y = ln ln 5 ln x x C y = −1+ D y = +1− ln ln 5 ln ln Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(6; −17; 21) C C(6; 21; 21) D C(8; ; 19) ′′ Câu Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −3 B f (−1) = C f (−1) = −5 D f (−1) = −1 √ x x Câu 10 Tìm nghiệm phương trình = ( 3) A x = B x = −1 C x = D x = R Câu R11 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C Câu 12 Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2) C (1; 2] D (−∞; 2] Câu 13 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m ≥ C m ≥ D m > Trang 1/5 Mã đề 001 Câu 14 Đường cong hình bên đồ thị hàm số nào? A y = x4 + B y = −x4 + C y = x4 + 2x2 + Câu 15 Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = C T = 81 D y = −x4 + 2x2 + D T = Câu 16 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C [ ; 2] [22; +∞) D [22; +∞) A ( ; 2] [22; +∞) B ( ; +∞) 4 Câu 17 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(6; 21; 21) C C(8; ; 19) D C(6; −17; 21) + 2x Câu 18 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B −4 < m < C ∀m ∈ R D < m , Câu 19 thức sau đúng? √ √ Bất đẳng π e A ( + 1) > ( + 1) C 3−e > 2−e π B 3√ < 2π √ e π D ( − 1) < ( − 1) Câu 20 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; −3; −1) D M ′ (2; 3; 1) Câu 21 Kết đúng? R sin3 x + C A sin x cos x = R C sin2 x cos x = −cos2 x sin x + C sin3 x B sin x cos x = − + C R D sin2 x cos x = cos2 x sin x + C R Câu 22 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≥ C m ≤ D m < √ Câu 23 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành π 10π A V = B V = C V = D V = π 3 Câu 24 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 20a3 C 30a3 D 100a3 Câu 25 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 600 C 300 D 450 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D Trang 2/5 Mã đề 001 √3 a2 b ) Câu 27 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( c A B − C D 3 R4 R4 R1 Câu 28 Cho f (x)dx = 10 f (x)dx = Tính f (x)dx −1 −1 A B 18 C −2 D Câu 29 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 A 3a B 6a C 3a D (2 ln x + 3)3 : x (2 ln x + 3)2 (2 ln x + 3)4 ln x + A + C B + C C + C 8 Câu 31 Đồ thị hàm số sau có điểm cực trị: A y = 2x4 + 4x2 + B y = x4 + 2x2 − C y = x4 − 2x2 − Câu 30 Họ nguyên hàm hàm số f (x) = D (2 ln x + 3)4 + C D y = −x4 − 2x2 − Câu 32 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D √ x− x+2 có tất tiệm cận? Câu 33 Đồ thị hàm số y = x2 − A B C D Câu 34 Hàm số hàm số sau có đồ thị hình vẽ bên A y = x3 − 3x2 B y = −x4 + 2x2 C y = −x4 + 2x2 + Câu 35 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + R2 |x2 − 2x|dx = (x2 − 2x)dx − 1 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − R3 (x2 − 2x)dx R3 R3 D y = −2x4 + 4x2 (x2 − 2x)dx |x2 − 2x|dx Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t x = + 2t x = + 2t x = −1 + 2t y = −2 + 3t y = −2 + 3t y = −2 − 3t y = + 3t A B C D z = + 5t z = − 5t z = − 5t z = −4 − 5t d Câu 37 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ (ABC) √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng A a B 2a C a D a √ 2x − x2 + Câu 38 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Trang 3/5 Mã đề 001 Câu 39 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 33π 31π C D A 6π B 5 √ Câu 40 Tính đạo hàm hàm số y = log4 x2 − 1 x x x B y′ = √ C y′ = D y′ = A y′ = 2 2(x − 1) ln (x − 1)log4 e (x − 1) ln x − ln Câu 41 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 3a3 B 9a3 C 6a3 D 4a3 Câu 42 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + πR2 C S = 2πRl + 2πR2 D S = πRl + 2πR2 Câu 43 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; ′ AA′ =√2a Gọi α số đo góc √ hai đường thẳng AC DB Tính giá trị cos α.√ A B C D 2 √ Câu 44 Tính đạo hàm hàm số y = log4 x2 − x x x ′ ′ B y′ = C y = D y = A y′ = √ (x − 1) ln 2(x2 − 1) ln (x2 − 1)log4 e x2 − ln Câu 45 Biết π R2 sin 2xdx = ea Khi giá trị a là: A − ln B C ln D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 46 Trong khơng gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 47 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B −3 ≤ m ≤ C m < D m > −2 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = − 2t x = −1 + 2t x = + 2t y = −2 − 3t y = −2 + 3t y = + 3t y = −2 + 3t A B C D z = − 5t z = + 5t z = −4 − 5t z = − 5t Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080255 đồng C 36080254 đồng D 36080253 đồng √ Câu 50 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình vơ nghiệm C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình với x ∈ (4; +∞) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001