Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (D) giới hạn bởi các đường y =[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hoành Tìm thể tích V khối trịn xoay tạo thành? 10π π B V = C V = π D V = A V = 3 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 60a3 C 100a3 D 30a3 Câu Kết đúng? R R sin3 x + C B sin2 x cos x = −cos2 x sin x + C A sin x cos x = − R R sin3 x C sin x cos x = + C D sin2 x cos x = cos2 x sin x + C Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a a 5a 2a B C √ D A √ 5 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; −5; 0) C (0; 0; 5) D (0; 1; 0) + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B < m , C −4 < m < D ∀m ∈ R p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux > thìy < −15 C Nếux = y = −3 D Nếu < x < y < −3 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m ≥ e−2 C m > 2e D m > e2 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD √ có chiều cao chiều cao tứ diện √ √ tiếp √ π 2.a2 π 3.a 2π 2.a2 D B C π 3.a A 3 √ d = 1200 Gọi Câu 10 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a 15 a A a 15 B C D 3 Câu 11 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Trang 1/5 Mã đề 001 Câu 12 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2) B (1; 2] C [2; +∞) D (−∞; 2] Câu 13 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 14 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A < m < B −2 ≤ m ≤ C m = D −2 < m < Câu 15 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m > D m ≥ −1 √ Câu 16 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; ) B (0; 1) C ( ; +∞) D (1; +∞) 4 Câu 17 Kết đúng? R R sin3 x sin3 x A sin2 x cos x = + C B sin2 x cos x = − + C 3 R R C sin2 x cos x = cos2 x sin x + C D sin2 x cos x = −cos2 x sin x + C Câu 18 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường trịn C Đường parabol D Đường hypebol đúng? x B Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R Câu 19 Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số đồng biến R ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B ac < C ad > D bc > −u (2; −2; 1), kết luận sau đúng? Câu 21 Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = √3 −u | = D |→ A |→ B |→ C |→ Câu 20 Cho hàm số y = Câu 22 Cho√ hai số thực a, bthỏa mãn a√> b > Kết luận sau sai? √ √ √5 √ 2 − A a > b B a < b− C ea > eb D a < b Câu 23 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 2πR3 C πR3 D 6πR3 Câu 24 Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B ln x > ln y C log x > log y D log x > log y a a Câu 25 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = +1− ln ln 5 ln ln x x C y = −1+ D y = + ln ln 5 ln Câu 26 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (−1; 1; 1) B (1; 1; 3) C (1; −2; −3) D (1; −1; 1) Trang 2/5 Mã đề 001 Câu 27 Cho hàm số y = x −3x Tính y′ A y′ = (2x − 3)5 x −3x C y′ = (x2 − 3x)5 x −3x ln B y′ = x −3x ln D y′ = (2x − 3)5 x −3x ln √ Câu 28 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a 10 a a C D A a B Câu 29 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 2π B 8π C 3π D 4π Câu 30 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π 3π π π A V = B V = C V = D V = Câu 31 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + C x3 + − 4x B x3 − x4 + 2x − 4x + D 2x3 − 4x4 4 (2 ln x + 3)3 Câu 32 Họ nguyên hàm hàm số f (x) = : x ln x + (2 ln x + 3) (2 ln x + 3)4 A + C B + C C + C 8 (2 ln x + 3)2 D + C Câu 33 Đồ thị hàm số sau có điểm cực trị: A y = x4 + 2x2 − B y = x4 − 2x2 − C y = 2x4 + 4x2 + D y = −x4 − 2x2 − Câu 34 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080254 đồng C 36080251 đồng D 36080255 đồng Câu 35 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 36 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x > y C Nếu a > a x = ay ⇔ x = y D Nếu a < a x > ay ⇔ x < y Câu 37 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = m n 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Câu 38 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D cos x π Câu 39 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 3π 6π 6π 6π A ln + B ln + C D ln + 5 5 Trang 3/5 Mã đề 001 3x Câu 40 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = C m = D m = −2 Câu 41 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc DB′ Tính giá trị cos α.√ √ hai đường thẳng AC √ A B C D 2 Câu 42 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − C R3 |x2 − 2x|dx = − D R3 |x2 − 2x|dx R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 43 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 3mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Câu 44 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 27 23 29 A B C D 4 4 Câu 45 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 C (x − 1) + (y + 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 47 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 3a3 C 4a3 D 12a3 π R2 Câu 48 Biết sin 2xdx = ea Khi giá trị a là: A B ln C r Câu 49 Tìm tập xác định D hàm số y = A D = (−∞; 0) C D = (−∞; −1] ∪ (1; +∞) D − ln 3x + x−1 B D = (−1; 4) D D = (1; +∞) log2 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 11 17 21 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001