Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Số nghiệm của phương trình 9x + 5 3x − 6 = 0[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Số nghiệm phương trình x + 5.3 − = A B C x D Câu R2 Công thức sai? A R sin x = − cos x + C C cos x = sin x + C R B R a x = a x ln a + C D e x = e x + C √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hoành Tìm thể tích V khối trịn xoay tạo thành? π 10π D V = A V = B V = π C V = 3 Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B aloga x = x D loga x2 = 2loga x C loga2 x = loga x R1 √3 Câu Tính I = 7x + 1dx 60 A I = 28 B I = 45 28 C I = 20 D I = 21 Câu Cho hình√chóp S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: a2 3b2 − a2 3a2 b A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 3ab2 C VS ABC = D VS ABC = 12 12 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B log x > log y C log x > log y a D loga x > loga y a Câu Hình nón có bán kính đáy √ R, đường sinh l diện √ tích xung quanh A 2πRl B 2π l2 − R2 C π l2 − R2 D πRl Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = −2 C yCD = 52 D yCD = 36 Câu 10 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 11 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B π C R Câu 12 Tính nguyên hàm cos 3xdx A sin 3x + C B sin 3x + C C −3 sin 3x + C D 1 D − sin 3x + C Trang 1/5 Mã đề 001 Câu 13 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể √ tích khối nón √ π 2.a3 2π.a3 4π 2.a3 π.a3 B C D A 3 3 2x + 2017 Câu 14 Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu 15 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B m = C < m < D −2 ≤ m ≤ √ sin 2x R bằng? Câu 16 Giá trị lớn hàm √ số y = ( π) A B π C π D √ x Câu 17 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H1) C (H3) D (H2) Câu 18 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x3 − 2x2 + 3x + C y = x2 − 2x + D y = −x4 + 3x2 − Câu 19 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường trịn B Đường elip C Đường hypebol D Đường parabol Câu 20 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ D R = 29 A R = B R = C R = 21 Câu 21 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 √ Câu 22 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành 10π π A V = B V = π C V = D V = 3 Câu 23 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = C m = −2 D m = −15 Câu 24 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; 2; 0) C (0; 6; 0) D (0; −2; 0) Câu 25 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 x − Câu 26 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = (1; 2) B S = (−∞; 1] ∪ [2; +∞) C S = [1; 2] D S = (0; 1] ∪ [2; +∞) Trang 2/5 Mã đề 001 x2 + 2x Câu 27 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A −2 B C D 15 Câu 28 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x B x3 − x4 + 2x C 2x3 − 4x4 D x3 + − 4x + 4 x3 Câu 29 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m ≥ −8 B m ≤ C m ≤ −2 D m < −3 Câu 30 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt √ đáy nhỏ nhất, S 2 A 125dm B 106, 25dm C 50 5dm2 D 75dm2 Câu 31 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R (mặt nước thấp nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số h √ √ √ √ π− 2π − 3 2π − 3 B C D A 12 12 Câu 32 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (−1; 1; 1) B (1; 1; 3) C (1; −2; −3) D (1; −1; 1) Câu 33 Đồ thị hàm số sau có điểm cực trị: A y = x4 + 2x2 − B y = 2x4 + 4x2 + C y = −x4 − 2x2 − D y = x4 − 2x2 − Câu 34 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + 2πR2 D S = πRl + πR2 cos x π Câu 35 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 3π 6π 6π A ln + B ln + C ln + D 5 5 Câu 36 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 37 Hàm số hàm số sau có đồ thị hình vẽ bên A y = x3 − 3x2 B y = −2x4 + 4x2 C y = −x4 + 2x2 + D y = −x4 + 2x2 Câu 38 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m < −2 C m > m < − D m > Câu 39 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 e2x A (2x + 1)2 dx = +C B e2x dx = + C R R C x dx =5 x + C D sin xdx = cos x + C Trang 3/5 Mã đề 001 √ 2x − x2 + Câu 40 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 41 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 3a C 4a D 9a3 A 6a Câu 42 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 10 16 10 31 21 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 43 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 A 3a B 4a C 6a D 9a3 Câu 45 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − (x2 − 2x)dx (x2 − 2x)dx |x2 − 2x|dx Câu 46 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc DB′ Tính giá trị cos α √ hai đường thẳng AC √ 3 B C D A 2 Câu 47 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a 30 3a a 15 3a A B C D 10 2 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = C R = 15 D R = 14 Câu 49 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 21 11 17 10 31 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001