Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có tất cả các cạn[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a 3a 5a a A √ B C D √ 5 Câu R2 Công thức sai? R A R e x = e x + C B R a x = a x ln a + C C cos x = sin x + C D sin x = − cos x + C Câu 3.√ Bất đẳng thức √ πsau đúng? e A ( − 1) < ( − 1) C 3−e > 2−e √ √ π e B ( + 1) > ( + 1) D 3π < 2π Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; −3; −1) D M ′ (2; 3; 1) Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = A B Câu Hàm √ số sau√đây đồng biến R? A y = x2 + x + − x2 − x + C y = tan x C −6 D 13 B y = x2 D y = x4 + 3x2 + Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 360 C 300 D 450 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −3 C f (−1) = D f (−1) = −1 Câu 10 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường tròn ngoại tiếp tam giác BCD √ có chiều cao chiều√cao tứ diện √ √ 2π 2.a2 π 3.a2 π 2.a2 A π 3.a B C D 3 Câu 11 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π B V = C V = D V = A V = 5 3 Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(0; 0; 3) C A(1; 2; 0) D A(0; 2; 3) √ sin 2x Câu 13 R bằng? √ Giá trị lớn hàm số y = ( π) A π B C π D Câu 14 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Trang 1/5 Mã đề 001 Câu 15 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C m < D m < A Không tồn m B < m < 3 Câu 16 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; 2) C I(1; 1; 2) D I(0; 1; −2) Câu 17 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 450 B 300 C 600 D 360 Câu 18 Số nghiệm phương trình x + 5.3 x − = A B C D ax + b Câu 19 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B bc > C ac < D ad > R √3 Câu 20 Tính I = 7x + 1dx 60 21 45 20 B I = C I = D I = A I = 28 28 −x Câu 21 Tìm tất giá trị tham số m để hàm số y = xe + mx đồng biến R? A m > 2e B m ≥ e−2 C m > e2 D m > Câu 22 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 2a 5a 3a B √ D √ A C 5 Câu 23 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = +1− B y = + ln ln 5 ln x x −1+ D y = − C y = ln ln 5 ln ln Câu 24 Hình nón có bán kính √ đáy R, đường sinh l diện √ tích xung quanh A πRl B π l2 − R2 C 2π l2 − R2 D 2πRl √ x Câu 25 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H3) C (H1) D (H2) √3 a2 b Câu 26 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A − B C D 3 n e R ln x Câu 27 Tính tích phân I = dx, (n > 1) x 1 1 A I = n + B I = C I = D I = n n−1 n+1 √ Câu 28 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a 10 a A B C a D Câu 29 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 46.538667 đồng B 45.188.656 đồng C 43.091.358 đồng D 48.621.980 đồng Trang 2/5 Mã đề 001 x2 + 2x Câu 30 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A 15 B −2 C D Câu 31 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác √ ABC quanh trục AB √ πa B πa3 C 3πa3 D πa3 A Câu 32 Cho hàm số y = x −3x Tính y′ 2 A y′ = (x2 − 3x)5 x −3x ln B y′ = x −3x ln 2 C y′ = (2x − 3)5 x −3x ln D y′ = (2x − 3)5 x −3x Câu 33 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5 5π 20 5πa3 A V = πa B V = a C V = D V = πa3 6 Câu 34 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = d Câu 35 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) C a D a A 2a B a Câu 36 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 37 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 |x − 2x|dx = − C D R3 R2 (x − 2x)dx + R2 R3 1 R3 R2 R3 (x2 − 2x)dx |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = |x2 − 2x|dx − R3 (x2 − 2x)dx |x2 − 2x|dx Câu 38 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > m < −1 C m > m < − D m > Câu R39 Chọn mệnh đề mệnh đề sau: R A sin xdx = cos x + C B x dx =5 x + C R R (2x + 1)3 e2x C (2x + 1)2 dx = +C D e2x dx = + C Câu 40 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln ′ x+cos3x C y = ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 41 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = 0.√ A R = 15 B R = 14 C R = D R = Trang 3/5 Mã đề 001 Câu 42 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 125π 500π 400π 250π A B C D 9 Câu 43 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = + 2(ln a)2 C P = 2loga e D P = Câu 44 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 45 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A ln + 5 B 6π C ln + π cos x F(− ) = π Khi giá trị sin x + cos x 6π D 3π ln + Câu 46 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B 1 R3 R2 |x − 2x|dx = (x − 2x)dx − C R3 D |x2 − 2x|dx = − R3 R3 R2 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx (x2 − 2x)dx A D = (−1; 4) 3x + x−1 B D = (−∞; 0) C D = (−∞; −1] ∪ (1; +∞) D D = (1; +∞) r Câu 47 Tìm tập xác định D hàm số y = log2 √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − x x A y′ = B y′ = √ C y′ = (x − 1)log4 e 2(x − 1) ln x2 − ln D y′ = (x2 x − 1) ln Câu 49 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y C Nếu a > a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x > y Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A B C D 6π 5 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001