Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hàm số nào sau đây không có cực trị? A y = x2[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Hàm số sau khơng có cực trị? A y = x2 C y = cos x B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (2; −1; 2) D (−2; 1; 2) Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 21 C R = 29 D R = Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; 3; 1) Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 60a3 C 100a3 D 30a3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B 3π C D 3π A √ 3 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = 13 C m = −2 D m = Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = + ln ln 5 ln x x C y = − D y = +1− ln ln 5 ln ln Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = −x4 + C y = x4 + 2x2 + D y = x4 + 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng Câu 10 Cho hàm số y = Trang 1/5 Mã đề 001 √ Câu 11 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng C Khơng có tiệm cận D Có tiệm cận ngang tiệm cận đứng Câu 12 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 13 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − 12 m2 − A B C D 2m 2m m 2m √ Câu 14 Đạo hàm hàm số y = log 3x − là: 6 2 A y′ = B y′ = D y′ = C y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln R5 dx = ln T Giá trị T là: Câu 15 Biết 2x − √ A T = B T = 81 C T = D T = Câu 16 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(1; 1; 2) B I(0; 1; 2) C I(0; 1; −2) D I(0; −1; 2) Câu 17 Kết đúng? R sin3 x A sin x cos x = − + C R C sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = cos2 x sin x + C D R sin2 x cos x = sin3 x + C Câu 18 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x3 C y = x − 2x + D y = −x4 + 3x2 − x π π π Câu 19 Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 + 2x Câu 20 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? C < m , D −4 < m < A ∀m ∈ R B m < Câu 21 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) Câu 22 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Trang 2/5 Mã đề 001 , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π C √ D 3π A B 3π 3 Câu 23 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu 24 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = (−∞; ln3) C S = [ 0; +∞) D S = [ -ln3; +∞) Câu 25 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ a b2 − 3a2 3ab2 A VS ABC = B VS ABC = 12 √ √ 12 3a b a2 3b2 − a2 D VS ABC = C VS ABC = 12 12 x2 + 2x Câu 26 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A −2 B C 15 D Câu 27 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D (2 ln x + 3) Câu 28 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3) (2 ln x + 3)4 (2 ln x + 3)2 ln x + + C B + C C + C D + C A 8 2 Câu 29 Họ nguyên hàm hàm số y = (x − 1)e x là: A (x − 1)e x + C B xe x−1 + C C (x − 2)e x + C D xe x + C 2x − đạt giá trị lớn đoạn [1; 3] Câu 30 Với giá trị tham số m hàm số y = x + m2 : √ A m = ±1 B m = ±3 C m = ± D m = ±2 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D Câu 32 Đồ thị hình bên đồ thị hàm số nào? 2x − 2x + 2x + −2x + B y = C y = D y = A y = x−1 x+1 x+1 1−x Câu 33 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga x có nghĩa với ∀x ∈ R B loga xn = log x , (x > 0, n , 0) C loga = a loga a = an D loga (xy) = loga x.loga y Câu 34 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 29 27 23 B C D A 4 4 Câu 35 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 4a3 C 6a3 D 12a3 Trang 3/5 Mã đề 001 Câu 36 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 37 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ C R = 15 D R = A R = B R = 14 √ Câu 38 Tính đạo hàm hàm số y = log4 x2 − x x x ′ ′ A y′ = B y′ = C y = D y = √ (x − 1) ln 2(x2 − 1) ln (x2 − 1)log4 e x2 − ln Câu 39 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π B C D 6π A 5 r 3x + Câu 40 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (−∞; −1] ∪ (1; +∞) C D = (1; +∞) D D = (−1; 4) ———————————————– √ Câu 41 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ (4; +∞) D Bất phương trình với x ∈ [ 1; 3] −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 42 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ → − −v = (2; 14; 14) −u + 3→ −v = (1; 13; 16) A u + 3→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 43 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = x3 − 3x2 C y = −x4 + 2x2 + D y = −2x4 + 4x2 Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 4a C 9a D 3a3 A 6a Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C D −2 x + mx + Câu 46 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = −1 B m = C m = D Khơng có m Câu 47 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 Câu 48 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa 15 πa2 17 A B C D 4 Trang 4/5 Mã đề 001 Câu 49 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc hai đường thẳng AC √ DB′ Tính giá trị cos α.√ B C D A 2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001