Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hình nón có bán kính đáy R, đường sinh l thì[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu √Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh 2 A 2π l − R B πRl C π l2 − R2 D 2πRl Câu Bất đẳng thức sau đúng? A 3−e > 2−e C 3π < 2π √ √ π e B ( √3 + 1) > ( √ + 1) e π D ( − 1) < ( − 1) π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π ln π π ln π π ln π π ln π B F( ) = + C F( ) = − D F( ) = − A F( ) = + 4 4 4 Câu Kết đúng? R sin3 x A sin x cos x = + C R C sin2 x cos x = −cos2 x sin x + C sin3 x B sin x cos x = − + C R D sin2 x cos x = cos2 x sin x + C √ ′ ′ ′ Câu Cho lăng trụ ABC.A B C có đáy a, AA′ = 3a Thể tích khối √ lăng trụ cho là: √ 3 A a B 3a C 3a D 3a3 R Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 1; 0) C (0; −5; 0) D (0; 0; 5) √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? π 10π D V = A V = B V = π C V = 3 Câu Hàm số sau khơng có cực trị? A y = x2 C y = x3 − 6x2 + 12x − B y = cos x D y = x4 + 3x2 + Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x−1 y+2 z = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − y − 2z = C (P) : x − 2y − = D (P) : x − y + 2z = Câu 10 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x − 2) + (y − 1) + (z + 1) = Câu 11 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 = B = C = D = A V2 V2 V2 V2 Trang 1/5 Mã đề 001 √ d = 1200 Gọi Câu 12 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt phẳng (A1 BK) √ a a 15 a B C D a 15 A Câu 13 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32π 32 B V = C V = D V = A V = 3 Câu 14 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = −5 C f (−1) = −3 D f (−1) = Câu 15 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích khối nón √ √ π.a3 4π 2.a3 π 2.a3 2π.a3 B C D A 3 3 √ Câu √ 16 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 300 C 1200 D 600 Câu 17 Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga2 x = loga x C loga x2 = 2loga x D loga (x − 2)2 = 2loga (x − 2) Rm dx Câu 18 Cho số thực dươngm Tính I = theo m? x + 3x + m+2 2m + m+2 m+1 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+1 m+2 2m + m+2 Câu 19 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = tan x 3x + D y = sin x C y = x−1 Câu 20 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; −3; −1) D M ′ (−2; 3; 1) −u (2; −2; 1), kết luận sau đúng? Câu 21 Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu 22 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = [ -ln3; +∞) C S = (−∞; ln3) D S = (−∞; 2) Câu 23 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = −15 D m = 13 Câu 24 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A √ B 3π C D 3π 3 Câu R25 Công thức sai? A R a x = a x ln a + C C cos x = sin x + C R B R e x = e x + C D sin x = − cos x + C Trang 2/5 Mã đề 001 √3 a2 b ) Câu 26 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( c A B C D − 3 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 2; 6) B (4; −6; 8) C (−2; 3; 5) D (1; −2; 7) Câu 28 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 4a2 b 2a2 b 2a2 b B √ C √ D √ A √ 3π 3π 2π 2π 2 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x + y + z − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi √ là: A 3π B 2π C 4π D 8π 1 Câu 30 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) k(k + 1) 4k(k + 1) A M = B M = C M = D M = 2loga x 3loga x loga x loga x Câu 31 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng (ABCD) 60 Tính √ sin góc MN và√mặt phẳng (S BD) 10 A B C D 5 Câu 32 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x + B 2x3 − 4x4 C x3 − x4 + 2x D x3 + − 4x 4 Câu 33 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 12 24 → − → − Câu 34 Trong không gian với hệ trục tọa độ Oxyz cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ véc −u + 3→ −v tơ 2→ → − −v = (3; 14; 16) −u + 3→ −v = (1; 14; 15) A u + 3→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ cos x π Câu 35 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 3π 6π 6π 6π A ln + B ln + C D ln + 5 5 x + mx + Câu 36 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B m = C Khơng có m D m = −1 Câu 37 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−1; 1) C (−3; 0) D (3; 5) r 3x + Câu 38 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) Trang 3/5 Mã đề 001 B D = (1; +∞) C D = (−1; 4) ———————————————– D D = (−∞; −1] ∪ (1; +∞) Câu 39 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 4a3 C 6a3 D 12a3 Câu 40 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 21 10 16 10 31 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 41 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) Tính thể tích khối vng góc với mặt phẳng (ABC), diện tích tam giác S BC a √ √ √ √ chóp S ABC 3 3 a 15 a 15 a a 15 A B C D 16 Câu 42 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = 2loga e C P = + 2(ln a)2 D P = ln a Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 25 23 29 B C D A 4 4 Câu 44 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m < −2 C m > m < − D m > Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 21 10 16 11 17 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D Câu 48 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 6π C 12π D 10π Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a 15 a 15 a 15 a A B C D 16 Câu 50 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (1; 5) C (−3; 0) D (3; 5) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001